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INTRODUCTION
I Clustering: an unsupervised learning where the objects

are grouped according to some similarity inherent among
them

I Aplications: image segmentation, information retrieval,
data reduction, time series forecasting etc.



4

INTRODUCTION BACKGROUND DBN SUPPORTING CLUSTERING CONCLUSION REFERENCES

INTRODUCTION

I Different kind of algorithms:
I Hierarchical
I Hard and soft clustering
I Distance based
I Probabilistic based

I Similarity is a central factor to the clustering process
I Do not confuse clustering and classification
I The main clustering challenges today:

I The large amount of data (Big data)
I Online clustering
I Data dimensionality
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INTRODUCTION

I The principal component analysis (PCA) is the most
popular methodology to tackling the data dimensionality
problem

I Drawback: it is linear!
I Nonlinear correlations between original variables cannot be

preserved
I An alternative is the deep belief network (DBN)

I Stack of restricted Boltzmann machines
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K-MEANS

I The K-means aims to partition N observations into K sets
S = {S1, . . . ,SK} (MacQueen, 1967)

I Hard cluster

I It is based on minimization of the following objective
function:

J =

N∑
i=1

K∑
j=1

∥∥xi − cj
∥∥ (1)

where:
I {x1, . . . , xN} is the set of samples
I cj is the centroid j, i.e., the average of the elements in Sj
I ‖∗‖ is the similarity metric chosen
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K-MEANS

Algorithm 1: K-means
Input : A set of samples X

The number os clusters K
1 Set the initial value of each c ∈ S (the centroids)
2 while S not converged do
3 for each sample x ∈ X do
4 Compute ‖x− S‖
5 Relate x to the closest c ∈ S
6 end
7 for each cluster c ∈ S do
8 Update the c value by computing the mean of the samples

relate to it
9 end

10 end
Return: S
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K-MEANS OPERATION
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FUZZY C-MEANS

I Fuzzy C-means (FCM) is a method of clustering which
allows one piece of data to belong to two or more clusters
(Dunn, 1973)

I Soft cluster
I It is based on minimization of the following objective

function:

Jm =
N∑

i=1

C∑
j=1

µm
ij
∥∥xi − cj

∥∥ (2)

where:
I µm

ij is the degree of membership of xi in the cluster cj

defined as:

µm
ij = 1∑C

k=1

(
‖xi−cj‖
‖xi−ck‖

) 2
m−1

0 < µm
ij < 1

(3)
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FUZZY C-MEANS

I m is the level of fuzziness defined in 1 < m <∞
I A large m results in smaller membership values, i.e, fuzzier

clusters
I If m = 1 the FCM becomes the K-means

I xi, cj and ‖∗‖ are defined as in K-means
I A cluster cj is computed as:

cj =

∑N
i=1 µ

m
ij × xi∑N

i=1 µ
m
ij

(4)
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FUZZY C-MEANS

Algorithm 2: Fuzzy C-means
Input : A set of samples X

The number os clusters C
The level of fuziness m

1 Define a matrix U = [uij] and initialize it randomly
2 while U not converged do
3 Compute cj according to equation 4
4 Update U according to equation 3
5 end

Return: U and S
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AUTOENCODERS

I An unsupervised learning algorithm network that is
trained to attempt to copy its input into its output

I Aplications: feature extraction, dimensionality reduction,
denoise etc.
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AUTOENCODERS

I The network may be viewed as consisting of two parts:
I An encoder function h = f (x)
I A decoder that produces a reconstructi on r = g(h)

I It is not designed to be unable to learn to copy perfectly
I The model is forced to prioritize which aspects of the input

should be copied
I It often learns useful properties of the data

I The learning process is described simply as minimizing a
loss function L(x, g(f (x))

I The standard approach uses the backpropagation setting
the target values to be equal to the inputs, i.e., yi = xi
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AUTOENCODER

I From (Hinton & Salakhutdinov, 2006):
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RESTRICTED BOLTZMANN MACHINE

I The RBM is a stochastic network composed of a visible
layer (v) and a hidden layer (h) (Hinton, 2002)

I It learns the probability distribution over the input data
training

I Aplications: feature extraction, pattern recognition,
dimensionality reduction, denoise etc.
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RESTRICTED BOLTZMANN MACHINE
I Each configuration (v,h) has an associated energy value

defined by:

E(v,h;θ) = −
m∑

i=1

(vi − ai)
2

2σ2
i
−

k∑
j=1

bjhj −
m,k∑

i,j=1

vi

σ2 hjwij (5)

I From the network energy, one computes the conditional
probabilities of v and h:

p(vi = v|h;θ) = N(v|ai +

k∑
j=1

hjwij, σ
2) (6)

p(dj = 1|v;θ) = φ(bj +

m∑
i=1

viwij) (7)

where:
I θ = (W, a,b)
I φ(x) = 1

1+e−x , the logistic function
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RESTRICTED BOLTZMANN MACHINE

I The RBM is trained by performing the contrastive
divergence algorithm (Hinton, 2002)
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RESTRICTED BOLTZMANN MACHINE

I The update rules for θ are defined as:

Wt+1 = Wt+∆Wt → ∆Wt = η(v0hT
0−v1hT

1 )−ρWt+α∆Wt−1

(8)

at+1 = at + ∆at → ∆at = η(v0 − v1) + α∆at−1 (9)

bt+1 = bt + ∆bt → ∆bt = η(h0 − h1) + α∆bt−1 (10)

I η, ρ and α are known as learning rate, weight decay and
momentum, respectively.
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DEEP BELIEF NETWORK

I A DBN is a stack of RBMs or autoencoders or both
I Hinton et al. (2006) proposed a new way to train this kind

of network
I Greedy learning algorithm
I Hierarchical feature extraction
I A milestone in the history of deep learning
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DBN AND K-MEANS

I A stack of RBMs is used to pre-train the data for the
K-means algorithm

I Dimension reduction
I Feature extraction
I Nonlinear interactions
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DBN AND K-MEANS: EXPERIMENT

I Han & Sohn (2016) used this approach to cluter the seoul
metropolitan area acoording to travel patterns

I They collected data from smart-cards and stored the
passengers flow

I They used a 3-layers DBN with 132-32, 32-32 and 32-32
neuron connections

I The PCA - K-means was compared with their approach
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DBN AND K-MEANS: EXPERIMENT
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DBN AND K-MEANS: ISSUES

I The approach is straightforward, however, it needs more
investigation

I There is only one study case

I The RBM’s setup is not discussed
I Regarding the study case:

I It is not clear how to handle with the data
I It is not conclusive
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DBN AND FUZZY-C-MEANS

I Yang et al. (2015) proposed a more elaborate algorithm to
cluster data by using DBN

I Their algorithm combines DBN and FCM using two steps:
I First, it uses a stack of RBMs to produce the initial cluster

centroid
I Second, it uses a fine-tuning step by means of deep

auto-encoder to optimize the cluster centroid and the
membership produced by the FCM

I They call this algorithm by DBNOC
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DBN AND FUZZY-C-MEANS
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DBN AND FUZZY-C-MEANS
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DBN AND FUZZY-C-MEANS

I In the fining-tune stage, the loss function is achieved by
the negative log-likelihood of the reconstruction plus the
sumation of inner cluster distance metric:

J = e

(
−
∑

i

xi log x̂−
∑

i

(1− xi) log(1− x̂)

)
+

1
2(1− e)

 N∑
i=1

C∑
j=1

(x̂− cj)

 (11)

where x̂ is the reconstruction of the inputs xi
I The backpropagation is used to minimize the loss function

I The network weights are updated by the rule:

Wk+1 = Wk − α ∂J
∂W

(12)
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DBN AND FUZZY-C-MEANS: EXPERIMENTS

I Experiments were carried out considering low and high
dimensional datasets:
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DBN AND FUZZY-C-MEANS: EXPERIMENTS

I First stage:
I 3 RBMs stacked with N, 100 and 300 neurons
I Each RBM iterates for 30 times

I Second stage:
I Iteration number is 50 (high) and 30 (low)
I α = 0.1 (high) and α = 0.05 (low)
I e is described in the next tables
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DBN AND FUZZY-C-MEANS: EXPERIMENTS
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DBN AND FUZZY-C-MEANS: EXPERIMENTS
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DBN AND FUZZY-C-MEANS: ISSUES

I The authors did not present the setup of the parameters
I There is no statistical test of the results

I They did not present the standard deviation of the accuracy
I There is no discussion about the computational time

I The approach seems to be time-consuming.

I The comparison is not fair enough



33

INTRODUCTION BACKGROUND DBN SUPPORTING CLUSTERING CONCLUSION REFERENCES

K-RBMS

I Chandra et al. (2013) proposed a framework to cluster data
using K-RBMs

I The framework learns K RBMs simultaneously
I Each RBM learns one non-linear subspace
I All RBMs have the same architecture
I The nth data point is associated with the kth RBM (cluster)

I It is done using the reconstruction error:

e =
m∑

i=1

(v0 − v1)
2 (13)

I The RBMs weight’s are learnt in a batch update using the
associated points
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K-RBMS
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K-RBMS: EXPERIMENTS

I The authors carried out an experiment with 2 synthetic
datasets:

I D1: 500 samples ∈ R144, 5 clusters (100 × 5), Gaussian noise,
it has orthogonal basis vectors

I D2: 500 samples ∈ R144, 5 clusters (100 × 5), it does not has
orthogonal basis vectors

I They used 5 RBMs with 144 and 36 visible and hidden
layers, respectively 1

I The K-RBMs were compared with PCA-K-means,
RBM-K-means, K-means, Random Sample Consensus
(RANSAC) 2, Sparse Subspace Clustering (SSC) 3 and
t-SNE 4

1The authors do not present the remaining RBM’s parameters
2(Fischler & Bolles, 1981)
3(Elhamifarm & Vidal, 2009)
4(Van der Maaten & Hinton, 2008)
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K-RBMS: EXPERIMENTS

I The results in terms of clustering accuracy and
computational-time

I The authors reported that the clusters converged far before
that the RBM training

I The time-consuming is too low
I The PCA did not improve the K-means



37

INTRODUCTION BACKGROUND DBN SUPPORTING CLUSTERING CONCLUSION REFERENCES

K-RBMS: ISSUES

I The approach description is not clear
I The RBMs training phase should have a pseudocode

I The experiments is not enough to draw a conclusion
I Only two datasets
I There is no statistical test
I The time-consuming presented is suspicious

I There is no discussion about the RBMs parameters
I Neither about the value of K

I The algorithm is strongly sensible to the RBM weights’
initialization

I Hinton (2010) stated the reconstruction error is not enough
to know if a RBM is learning in its training phase
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CONCLUSION

I It was presented three methods to clustering data using
RBMs

I DBN-K-means
I DBNOC
I K-RBMs

I The DBN-K-means and DBNOC need to another clustering
algorithm to accomplish the task

I The DBN is used as a fetuare extraction and dimensionality
reduction

I The K-RBMs does not need to another clustering algorithm

I Interesting idea
I Weak description

I Some ideas can be used in the Helmholtz machine
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