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INTRODUCTION

I Capsule networks (CapsNets) are a hot new neural net
architecture proposed by Hinton’s group

I It’s a promising method that may have a profound impact
on deep learning, in particular for computer vision

I However, before we talk about the capsules, we need to
have a look at CNNs
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CNN’S DRAWBACKS

I There is no doubt CNN is a very important tool
I One of the reasons for the deep learning sucess

I But it has some drawbacks:
I Backpropagation:

I It needs a huge dataset to be effective
I Translation invariance:

I Objetcts with orientation or position changes might not be
recognized

I Pooling layers:
I It loses a lot of information
I It ignores the relation between the part and the whole
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CNN’S DRAWBACKS

I To a CNN, both pictures are similar:

I The presence of the mouth, eyes and nose are a strong
idicator to the CNN

I Orientational and relative spatial relationships between
these components are not very important to the model
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CNN’S DRAWBACKS

I The pooling layer tries to handle this problem
I But it’s not good enough

I According to Hinton:

The pooling operation used in convolutional neural
networks is a big mistake and the fact that it
works so well is a disaster.

I Thus, it is needed a new approach to handle this issue



7

INTRODUCTION WHAT IS WRONG WITH CNNS? CAPSULE NETWORKS RESULTS CONCLUSION

INVERSE GRAPHICS APPROACH

I Inpiration from computer graphics
I It deals with constructing a visual image from a internal

representation of geometric data.

I This representation is stored in computer’s memory
I Arrays of geometrical objects
I Matrices that represent relative positions and orientation

of these objects

I Lastly, a special software takes that representation and
converts it into an image on the screen

I This is called rendering
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INVERSE GRAPHICS APPROACH

I Hinton argues that brains do the opposite of rendering:
inverse graphics

1. Visual information is received by eyes
2. The eyes deconstruct a hierarchical representation of world
3. The brain tries to make relationships with already learned

patterns

I Key idea: representation of objects in the brain does not
depend on view angle

I How to model it in a neural newtork?
I In 3D graphics, relationships between 3D objects can be

represented by a so-called pose
I Pose is the combination of position and orientation of an

object
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INVERSE GRAPHICS APPROACH

I According Hinton, it is very important to preserve
hierarchical pose relationships between object parts

I This is the key intuition of capsule theory
I This is closer to what the human brain does in practice
I To recognize digits, the brain needs hundreds of examples,

at most
I CNNs need thousands
I That’s why it seems like a brute force approach
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CAPSULE NETWORKS

I A capsule is a new version of a neuron
I It encapsulates all important information about the state of

the feature they are detecting in vector form

I The probability of detection of a feature is provided by the
length of the output vector

I The state of the detected feature is encoded the direction in
which the vector points
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CAPSULE NETWORKS

I When a detected feature moves around the image the
vector’s length does not change

I But its orientation does

I Hinton calls it by equivariance:
I The activities changes when a object moves in the picture
I The probabilities of detection remain constant
I The CNN tries to achieve this behavior using max pooling.

But it fails.
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CAPSULE NETWORKS

I The capsule may be described in 4 steps:
1. Matrix multiplication of input vector
2. Scalar weighting of input vectors
3. Sum of weighted vectors
4. Vector-to-vector nonlinearity
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MATRIX MULTIPLICATION OF INPUT VECTOR

I Operation: ûj|i = Wijui

I The input vector û comes from capsules in the layer below

I Let us consider 3 lower layer capsules u1,u2 and u3
I They detect eye, mouth and nose, respectively
I An output capsule v detects the face

I These vectors are multiplied by the corresponding W
I It encodes important spatial and other relationships

between lower and higher features
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MATRIX MULTIPLICATION OF INPUT VECTOR

I For example: W1j may encode relationship between nose
and face

I Face is centered around the nose
I Its size is 10 times the noses’ one

I Thus, u1, represents where the face should be according to
the nose

I Similar intuitions can be made to the rest of vectors u2 and
u3

I If û1, û2 and û3 points to the same direction of v, it must be
a face
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MATRIX MULTIPLICATION OF INPUT VECTOR

I Prediction for the face location:
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SCALAR WEIGHTING OF INPUT VECTORS

I A lower level capsule needs to “decide” to which higher
level capsule it will send its output

I It will make its decision by adjusting the weights C
I Dynamic routing based on agreement
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SCALAR WEIGHTING OF INPUT VECTORS

I Which capsule should Q send its output?
I This is the essence of the dynamic routing algorithm

I v multiplied by W lands closer to the cluster of red vectors
in K

I The algorithm must increase the weight C between the
conection Q-K

I The dinamic routing algorithm has a mechanism to
achieve this behavior
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SUM OF WEIGHTED INPUT VECTORS

I Operation: sj =
∑

i cijûj|i

I It works in the same way of the standard neural
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VECTOR-TO-VECTOR NONLINEARITY

I CapsNet uses a new nonlinear function called ”squash”
I It squashes the vector to have length between [0,1] without

change its direction

v =

∥∥sj
∥∥2

1 +
∥∥sj
∥∥2

sj∥∥sj
∥∥2 (1)
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DYNAMIC ROUTING BETWEEN CAPSULES

Lower level capsule will send its input to the higher level
capsule that “agrees” with its input. This is the essence
of the dynamic routing algorithm.

I The goal of this algorithm is to determine the weights cij
I It’s a non-negative scalar
I For each lower layer capsules, the sum of all weights equals

1

I The characteristics of cij allow us to interpret them in
probabilistic terms

I This defines a probability distribution of its output
belonging to each higher level capsule
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DYNAMIC ROUTING BETWEEN CAPSULES

I It takes all outputs û from all capsules in a lower level l
I It will provide the output vj for a higher layer
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DYNAMIC ROUTING BETWEEN CAPSULES

I At the beginning: bi = 0→ ci = 0.5
I State of maximum confusion and uncertainty
I The lower capsule have no idea which higher capsule will

best fit their output

I At the last step: bij = bij + ûj|i × vj
I This step ensures the ”agreement”
I The dot product can be understanded as a measure of

similarity
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CAPSNET ARCHITECTURE

I CapsNet architecture for MNIST dataset - Encoder:

I This architecture has 3 layers: 2 convs and 1 caps
I It learns to encode it into a 16-dimensional vector of

instantiation parameters
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CAPSNET ARCHITECTURE

I Conv1:
I 256 filters 9 × 9, stride = 1, no padding, relu activation
I input: 28× 28× 1 images
I output: 20× 20× 256
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CAPSNET ARCHITECTURE

I PrimaryCaps:
I It aims to take basic features detected by the conv1 and

produce combinations of them
I 32 primaryCaps

I Very similar to convLayer
I Each caps applies eight 256 filters 9 × 9 to the conv1 output
I As the stride = 2, it produces 32 blocks of 6 × 6 × 8
I We can think the result as 1152 (6 × 6 × 32) 8D vectors
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CAPSNET ARCHITECTURE

I DigitCaps:
I It has 10 caps, one for each digit, of 16 dimension
I Each caps takes as input a 6× 6× 32 8-dimensional vector

(1152 8-D vectors)
I Each input vectors gets their own 8× 16 weight matrix W

I W maps 8-D to 16-D
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CAPSNET ARCHITECTURE

I DigitCaps
I For the first capsule:
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CAPSNET ARCHITECTURE

I Loss Function
I The model uses a special loss function:

Lk = Tk max(0,m+ − ‖vk‖)2 + λ(1− Tk)max(0, ‖vk‖ −m−)2 (2)

I Tk = 1 if the digit of class k is present, or 0 otherwise.
I m+ = 0.9, m− = 0.1 and λ = 0.5.
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CAPSNET ARCHITECTURE

I Decoder

I It takes a 16-D vector from the correct DigitCaps and learns
to reconstruct it into an digit image

I Reconstruction loss: Euclidean distance
I Final loss: L = LF + αRL, α = 0.0005
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EXPERIMENTAL RESULTS

Model Routing Decoder Error rate
CapsNet1 1 NO 0.39 ± 0.024
CapsNet1 1 YES 0.36 ± 0.009
CapsNet1 3 NO 0.40 ± 0.016
CapsNet1 3 YES 0.34 ± 0.016

[1] 3 YES 0.25 ± 0.005

Table: Error rate for MNIST dataset

I Batch size = 50, Epochs = 50, Optimizer: Adam, lr: 0.001
I Each epoch takes around 140 sec
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EXPERIMENTAL RESULTS
I Convergence graphs
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EXPERIMENTAL RESULTS

I Reconstruction:
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EXPERIMENTAL RESULTS

I Reconstruction [1]:
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CONCLUSION

I This is promising for image segmentation and object
detection

I It Requires less training data
I It tries to follow the brain algorithm
I It needs to be tested in larger datasets (ImageNet)
I Due to the inner loop in the routing, it is a bit slow
I It is proposed by Hinton, thus, we need to pay attention
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