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INTRODUCTION

I The Helmholtz machine (HM) is a probabilistic model
that is trained to create a generative model of a dataset

I It attempts to build a probability density models of the
input data

I Main characteristics:
I The network is composed by ”two binary nets”
I The training phase also has two parts (wake and sleep

phases)
I The whole learning is carried out by an unsupervised

method
I It is based on the statistical physics and information theory
I Heavily related with the restricted Boltzmann machine
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PROBABILITY

I Let us consider a bit vector d ∈ {0, 1}N

I Where N is the no of bits
I Ex: N = 2→ d = {00, 01, 10, 11}

I The HM is all about assigning probabilities to bit vectors
like d

I p : {0, 1}N → [0, 1] with p(d) ≥ 0 and
∑

d = 1
I p(d1), p(d2), . . . , p(dN)

I Such probability assignment gives the distribution of a
discrete random variable D

I p(d) = Prob [D = d]
I The probability that the random bit vector D takes on specific

value d
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PROBABILITY

I Considering a pair of bit vectors:
I p : {0, 1}L × {0, 1}M → [0, 1]
I We describe it as p(x,y)

I The joint probability distribution of two random bit
vectors X and Y

I p(x,y) = Prob[X = x and Y = y]

I Several definitions come from this distribution:
I Marginalization

I p(x) =
∑

y p(x, y) and p(y) =
∑

x p(x, y)
I Independence

I p(x, y) = p(x).p(y)
I Conditional probability

I p(x|y) = p(x,y)
p(y)
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PROBABILITY

I From the previous definitions:
I p(x,y) = p(x|y).p(y)
I p(x) =

∑
y p(x|y).p(y)

I p(x,y|d) = p(x,y,d)
p(d)

I p(y|x) = p(y)
p(x)p(x|y) (Bayes Theorem)



7

INTRODUCTION REVIEW OF BASIC PROBABILITY LAYERED NEURAL NETWORKS HELMHOLTZ MACHINE

INDEPENDENT AND IDENTICALLY DISTRIBUTED

RANDOM VARIABLES

I A random bit vector D with distribution p(d) can be
described as a joint distribution over all N bits:

I d : p(d) = p(d1, d2, . . . , dN)

I It is often the case in which that bit is independent and
identically distributed (IID) random variable

I They are mutually independent
I p(d1, d2, . . . , dN) = p(d1)p(d2) . . . p(dN)

I They are identically distributed
I p(di = 1) = p0 and p(di = 0) = 1− p0

I For any specific bit vector d:

p(d) =
∏

i

pdi
0 (1− p0)

1−di (1)
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SURPRISE AND ENTROPY

I It is often convenient to recast a probability value p into a
quantity called surprise

s = − log(d) (2)

I An event with p = 1⇒ zero surprise
I An event with p = 0⇒ infinity surprise
I Surprise is never negative

I Let us consider a function f (D), where D is a random
variable

I The expectation value of this function is given by

〈f (D)〉 =
∑

d

p(d)f (d) (3)
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SURPRISE AND ENTROPY

I The expected value of the surprise is called entropy

H(D) = 〈− log p(D)〉 = −
∑

d

p(d) log p(d) (4)

where log 0 = 0

I Low entropy⇒ low surprise⇒ the system’s probabilities
tend to be uniform

I High entropy⇒ high surprise⇒ the system’s
probabilities are unequal

I For conditional probabilities we have conditional entropy

H(X|Y) = −
∑

d

p(x|y) log p(x|y) (5)
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KULLBACK-LEIBLER DIVERGENCE

I It is one way to quantify how different two probability
distribution are

KL[pA(D), pB(D)] =
∑

d

pA(d) log
pA(d)
pB(d)

(6)

I If pA(d) = pB(d)⇒ KL = 0

I KL is never negative and KL[pA(D), pB(D)] 6= KL[pB(D), pA(D)]

I Using the logarithm’s properties and the expectation value’s
definition

KL[pA(D), pB(D)] = 〈− log pB(D)〉A − 〈− log pA(D)〉A (7)

I Thus, the KL from A to B is simply the difference in surprise
averaged by A.
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LAYERED NEURAL NETWORKS

I Each neuron computes:

di =

L∑
j=1

wijyj + bd
j (8)

yj =
L∑

k=1

wjkxk + by
k (9)

I To ease the computation we attach the bias into W and V
and appened 1 at the end of x and y

I Adding a nonlinearity: y = σ(Wx) and y = σ(Vy)
I Where σ(a) = 1

1+e−a
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LAYERED NEURAL NETWORKS

I Due to the sigmoid, the neuron output value is in [0,1]

I We can interpret this value as the probability that a
binary-value neuron produces the output 1

I The probability it ”fires” or ”turn on”

y = sample [py] , where py = σ(Wx) (10)

d = sample [pd] , where pd = σ(Vy) (11)

I Sample [p] is a stochastic function that yields 1 with
probability p and 0 with 1− p

I As σ never reaches 0 or 1, a neuron will never fire with
complete certainty

I This layered stochastic network will be the starting point
for the Helmholtz machine
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TOP-DOWN PATTERN GENERATION

I The HM sees the world as patterns made of flickering bits
I Each bit pattern d appears with p(d)

I Since d can assume a huge number os values, specifying
pd requires a lot of information

I However, the world is not completly random and the HM
attempts to exploit it

I In order to determine the data distribution p(d) we do the
following:

1. From a generative distribution we produce d using the
chain 1→ x→ y→ d

2. This chain will be implemented as a layered neural network
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TOP-DOWN PATTERN GENERATION

3. The pattern x is stochastically generated from a constant
bias

I It is not regarded to the input network

4. Only the layer d is connected to the real data. x and y are
hidden layers
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TOP-DOWN PATTERN GENERATION

I A generative distribution G for our chain requires the
sprecification of three distributions:

I pG(x), pG(y|x) and pG(d|y)

I Writing the chain x→ y→ d is a way to say we have
conditional independence of x and d given y:

pG(x,d|y) = pG(x|y)pG(d|y) (12)

I In other words, x inlfuences d only through y:

pG = (d|x,y) = pG(d|y) (13)
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TOP-DOWN PATTERN GENERATION

I From Eq. 12:

pG(d|y) =
pG(x,d|y)
pG(x|y)

pG(x,y,d) = pG(y,d|x)pG(x)
(14)

I From Eq. 14 we can get the 3 generation distributions
required:

pG(x,y,d) = pG(y,d|x)pG(x)
pG(x,y,d) = [pG(d|x,y)pG(y|x)]pG(x)

pG(x,y,d) = pG(d|y)pG(y|x)pG(x)
(15)
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TOP-DOWN PATTERN GENERATION

I Moreover, we can get them only from the joint distribution:

pG(x) =
∑

y,d pG(x,y,d)

pG(y|x) =
pG(x,y)
pG(x)

=
∑

d pG(x,y,d)∑
y,d pG(x,y,d)

pG(d|y) =
pG(d,y)
pG(y)

=
∑

d pG(x,y,d)∑
x,d pG(x,y,d)

(16)

I Thus, we just speak of pG(x,y,d) as the generative
distribution pack

I The ultimate quatity of interest is pG(d)
I The goal is to make the network’s pG(d) as close as possible

to the real data distribution p(d)



18

INTRODUCTION REVIEW OF BASIC PROBABILITY LAYERED NEURAL NETWORKS HELMHOLTZ MACHINE

THE GENERATIVE MODEL AS A NEURAL NETWORK

I The set of connections {bG,WG,VG} is a
way to specify pG(x, y, d)

I Of course, it is a constrained form
for a probability distribution

I The machine attempts to
approximate it as much as possible
to the reality

I We get the directional probabilities using Eq. 1 and the
weights:

pG(x) =
∏

k

pG(xk)
xk [1− pG(xk)]

1−xk , where pG(xk) = σ(bG
k )

(17)
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THE GENERATIVE MODEL AS A NEURAL NETWORK

pG(y|x) =
∏

k

pG(yj|x)yj [1−pG(yj|x)]1−yj , where: pG(yj|x) = σ(

L∑
k=1

wG
jkxk)

(18)

pG(d|y) =
∏

k

pG(di|y)di [1− pG(di|y)]1−di , where: pG(di|y) = σ(
M∑

j=1

vG
ij yj)

(19)

I x and y are known as the explanation of d

I The number of neurons are unrestricted

I There are variants with more layers, different activation
functions, lateral connections and so on
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ENERGY

I Let us consider the probability of an explanation x and y
given some fixed piece of generated data d:

pG(x,y|d) =
pG(x,y,d)

pG(d)
=

pG(x,y,d)∑
xy pG(x,y,d)

(20)

I According to the statistical physics, this is a energy
function:

EG(x,y|d) = − log pG(x,y,d) Applying Eq. 20:

pG(x,y|d) = e−EG(x,y|d)∑
xy e−EG(x,y|d)

(21)
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ENERGY

I From the generative energy EG(x, y|d) an analogy to statistical physics
arises:

I Suppose the state of a physical system fluctuates among a set of
state {q1, q2, . . .}

I The system is in thermal equilibrium if the probability of finding
the system in a state qi is related to its energy E(qi)

I This energy behaves according to the Boltzmann distribution

p(qi) =
e−

E(qi)
T∑

i e−
E(qi)

T

(22)

I Taking T = 1, EG(x, y|d) is known as the energy of the explanation x, y
of the data pattern d

I The energy is the surprise associated with the ocurrence of a particular
complete state



22

INTRODUCTION REVIEW OF BASIC PROBABILITY LAYERED NEURAL NETWORKS HELMHOLTZ MACHINE

FREE ENERGY

I We want to find a generative model, i.e, {bG,WG,VG}, that makes pG(d)
close to p(d). Therefore:

φ(G) = KL[p(D), pG(D)]

φ(G) =
∑

d p(d) log p(d)
pG(d) =

∑
d p(d) log p(d)−

∑
d

p(d) log pG(d)

(23)

I It is the expected surprise of the of the data generated by the network
weighted by the real-world probability data:

φ2(G) =
∑

d

p(d) log pG(d) = 〈− log pG(D)〉 (24)

I The surprise will get smaller if the HM learns a model that is close to
p(d)
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FREE ENERGY

I Thus, our optimization problem is to minimize φ2(G):

∇φ2(G) =
∑

d

p(d) ∇[log pG(d)] (25)

I We need to focus on the boxed part of Eq. 25

− log pG(d) = − log pG(d)× 1
− log pG(d) = − log pG(d)[

∑
x,y pG(x, y|d)]

− log pG(d) = −
∑

x,y pG(x, y|d) log pG(d)

− log pG(d) = −
∑

x,y pG(x, y|d) log[
pG(x,y,d)
pG(x,y|d) ]

− log pG(d) = −
∑

x,y pG(x, y|d) log pG(x, y, d) +−
∑

x,y pG(x, y|d) log pG(x, y|d)
− log pG(d) = −

∑
x,y pG(x, y|d)EG(x, y|d) + HG(X, Y|d)

− log pG(d) = 〈EG(X, Y; d)〉G − HG(X, Y|d)

(26)

I In statistical physics, the Helmholtz free energy of a
system is given by F = 〈E〉 − TH
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FREE ENERGY

I Thus, taking T = 1:

FG(d) = − log pG(d) = 〈EG(X,Y;d)〉G −HG(X,Y|d) (27)

I So, minimizing the KL divergence means minimizing the
generative free energy FG(D):

∂

∂bG
k

FG(d) ∂

∂wG
jk

FG(d) ∂

∂vG
jk

FG(d) (28)

I We need to express FG(D) in terms of the weights,
however:

I It does not work very well
I The equations are very hard to manipulate
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VARIATIONAL FREE ENERGY

I Let us consider another distribution pR(x,y|d), which can
be any arbitrary distribution for the moment

I Let us compute:

KL[pR(X, Y|d), pG(X, Y|d)] =
∑

xy pR(xy|d) log
pR(x,y|d)
pG(x,y|d)

KL[pR(X, Y|d), pG(X, Y|d)] = −HR(X, Y|d) + 〈EG(X, Y; d)〉R − FG(d)

FG(d) = −HR(X, Y|d) + 〈EG(X, Y; d)〉R − KL[pR(X, Y|d), pG(X, Y|d)]
(29)

I Now he have a expression for the generative Helmholtz
free energy involving a new distribution pR

I To proceed we need to use a method called variational
method
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VARIATIONAL FREE ENERGY

I Since the KL cannot be negative:

−HR(X,Y|d) + 〈EG(X,Y;d)〉R − FG(d) ≥ 0
FG(d) ≤ 〈EG(X,Y;d)〉R −HR(X,Y|d)

(30)

I The variational free energy from R to G is defined as:

FR
G(d) = 〈EG(X,Y;d)〉R −HR(X,Y|d)

FR
G(d) = FG(d) + KL[pR(X,Y|d), pG(X,Y|d)]

(31)

I Note that FG
G(d) = FG(d)

I Now we need to provide a method to determine pR(X,Y|d)
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BOTTOM-UP PATTERN RECOGNITION

I In order to determine pR(x,y|d), let us assume the chain
d→ x→ y

I It means we can factor pR(x,y|d) = pR(x|y)pR(y|d)

I As previously, let us use the HM upward connections to
help us with this task
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BOTTOM-UP PATTERN RECOGNITION

I The pattern d is the network input, and there is no bias
weight coming into it

I Thus, unlike the generative case, we have only two
equations:

pR(x|y) =
∏

k

pR(xk|y)xk [1− pR(xk|y)]1−xk , where: pR(xk|y) = σ(
M∑

j=1

wR
kjyj)

(32)

pR(y|d) =
∏

j

pR(yj|d)yj [1− pR(yj|d)]1−yj , where: pR(yj|d) = σ(
N∑

i=1

vR
ji di)

(33)
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LEARNING

I The HM learning algorithm is based on gradient descent
and it will involve two phases:

1. Wake-phase: it involves the generative weights

FR
G(d) = FG(d) + KL[pR(X,Y|d), pG(X,Y|d)] (34)

2. Sleep-phase: it involves the recognition weights

F̃R
G(d) = FG(d) + KL[pG(X,Y|d), pR(X,Y|d)] (35)

I Both phase use the variational free energy to compute the
gradients
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LEARNING: WAKE-PHASE

I In this pahse we need to work with FR
G(d):

FR
G(d) = 〈EG(X,Y;d)〉R −HR(X,Y|d)

FR
G(d) =

∑
xy

pR(x, y|d)EG(x, y;d) −HR(X,Y|d) (36)

I Let us take the derivatives ∂
∂bG ,

∂
∂wG

jk
and ∂

∂vG
ij

as∇G:

∇GFR
G(d) = ∇G

∑
xy pR(x, y|d)EG(x, y;d)

∇GFR
G(d) =

∑
xy pR(x, y|d)∇GEG(x, y;d)

∇GFR
G(d) = 〈∇GEG(X,Y;d)〉R

(37)

I Thus, the algorithm will sample a pattern d from the
recognition phase then updates the weights throught a
small gradient step
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LEARNING: WAKE-PHASE

I Now we need to evaluate∇GEG:

∇G∇GEG(X,Y;d) = −∇G log pG(x, y,d)
∇G∇GEG(X,Y;d) = −∇G log pG(x)pG(y|x)pG(d|y)
∇G∇GEG(X,Y;d) = −∇G log pG(x)−∇G log pG(y|x)−∇G log pG(d|y)

(38)

I According to our model:

log pG(x) = log
∏

k ξ
xk
k (1− ξk)

1−xk , where ξk = σ(bG
k )

log pG(x) =
∑

k xk log ξk +
∑

k(1− xk) log(1− ξk)

log pG(y|x) = log
∏

j ψ
yj
j (1− ψj)

1−yj , where ψj = σ(
∑L

k=1 wG
jkxk)

log pG(y|x) =
∑

j yj logψj +
∑

j(1− yj) log(1− ψj)

log pG(d|y) = log
∏

i δ
di
i (1− δi)

1−di , where δi = σ(
∑M

j=1 vG
jkyj)

log pG(d|y) =
∑

i di log δi +
∑

i(1− di) log(1− δi)

(39)
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LEARNING: WAKE-PHASE
I Computing the derivatives (hint: a = σ(b)⇒ da

db = a(1− a))

∂ log pG(x)
∂bG

k
= ∂

∂bG
k

∑
k xk log ξk +

∂

∂bG
k

∑
k(1− xk) log(1− ξk)

∂ log pG(x)
∂bG

k
= ∂

∂bG
k
[xk log ξk] +

∂

∂bG
k
[(1− xk) log(1− ξk)]

∂ log pG(x)
∂bG

k
= xk

∂

∂bG
k

log ξk + (1− xk)
∂

∂bG
k

log(1− ξk)

∂ log pG(x)
∂bG

k
= xk

ξk

∂

∂bG
k
ξk +

(1−xk)
(1−ξk)

∂

∂bG
k
(1− ξk)

∂ log pG(x)
∂bG

k
= xk

ξk

∂

∂bG
k
ξk − (1−xk)

(1−ξk)
∂

∂bG
k
ξk

∂ log pG(x)
∂bG

k
= xk

ξk

∂

∂bG
k
ξk − (1−xk)

(1−ξk)
∂

∂bG
k
ξk **hint

∂ log pG(x)
∂bG

k
= xk

ξk
ξk(1− ξk)− (1−xk)

(1−ξk)
ξk(1− ξk)

∂ log pG(x)
∂bG

k
= xk − ξk

(40)
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LEARNING: WAKE-PHASE

∂ log pG(y|x)
∂bG

k
= 0 ∂ log pG(d|y)

∂bG
k

= 0 (41)

I The remaining derivatives are computed similarity to Eq. 40

∂ log pG(y|x)
∂wG

jk
= (yj − ψj)xk

∂ log pG(d|y)
∂wG

jk
= 0 ∂ log pG(x)

∂wG
jk

= 0 (42)

∂ log pG(d|y)
∂vG

ij
= (di − δi)yj

∂ log pG(d|y)
∂vG

ij
= 0 ∂ log pG(x)

∂vG
ij

= 0 (43)

I In a vectorial form:

∇bG EG(x, y;d) = −(x− ξ)
∇WG EG(x, y;d) = −(y− ψ)xT

∇VG EG(x, y;d) = −(d− δ)yT
(44)
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LEARNING: WAKE-PHASE

I b comes to the world

I x and y come from the recognition distribution given d

I ξ, ψ and δ come from the generative distribution given x and y

I For each layer, the update rules are:

bG+ = α(x− ξ)
WG+ = α(y− ψ)xT

VG+ = α(d− δ)yT
(45)

where α is the learning rate
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LEARNING: WAKE-PHASE

I Pseudocode for wake-phase:

Algorithm 1: Wake-phase
1 d = getSampleFromWorld()

2 y = sample [σ(VRdT)]
3 x = sample [σ(WRyT)]

4 ξ = σ(bG)

5 ψ = σ(WGxT)

6 δ = σ(VGyT)

7 bG+ = α(x− ξ)
8 WG+ = α(y− ψ)xT

9 VG+ = α(d− ψ)yT
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LEARNING: SLEEP-PHASE

I It is similar to wake-phase, but the derivatives are taken
from F̃R

G(d) = FG(d) + KL[pG(X,Y|d), pR(X,Y|d)]

∇RF̃R
G(d) = KL[pG(X,Y|d), pR(X,Y|d)]

∇RF̃R
G(d) = 〈∇R log pR(X,Y|d)〉G

(46)

I Thus, we need to drawn our attention to∇R log pR(X,Y|d)

I The equations for pR(x|y) and pR(y|d) are obtained just like
Eq. 39



37

INTRODUCTION REVIEW OF BASIC PROBABILITY LAYERED NEURAL NETWORKS HELMHOLTZ MACHINE

LEARNING: SLEEP-PHASE

I The derivatives for log pR(x|y) and log pR(y|d) are obtained
similarly to the wake-phase

∂ log pR(x|y)
∂wR

kj
= (xk − ξk)xj

∂ log pR(y|d)
∂wR

kj
= 0 (47)

∂ log pR(x|y)
∂vR

ij
= 0 ∂ log pR(y|d)

∂vR
ij

= (yj − ψk)di (48)

I In a vectorial form:

∇WR log pR(x|y) = (x− ξ)yT

∇VR log pR(y|d) = (y− ψ)dT (49)
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LEARNING: SLEEP-PHASE

I For each layer, the update rules are:

WR+ = α(x− ξ)yT

RG+ = α(y− ψ)dT (50)

where α is the learning rate

I x and y come from the generative distribution
I ξ and ψ come from the recognition distribution given x and

y
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LEARNING: SLEEP-PHASE

I Pseudocode for sleep-phase:

Algorithm 2: Wake-phase
1 x = sample[σ(bG)]

2 y = sample [σ(WGxT)]
3 d = sample [σ(VGyT)]

4 ψ = σ(VRdT)

5 ξ = σ(WRyT)

6 VR+ = α(y− ψ)dT

7 WR+ = α(x− ξ)yT
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LEARNING: THE WHOLE ALGORITHM

I All weights are started at 0
I As σ(0) = 0.5, every neuron has 50-50% change to fire

Algorithm 3: The whole algorithm
1 WG,VG,bG = 0

2 WR,VR

3 repeat
4 wake-phase to change WG,VG,bG

5 sleep-phase to change VR,WR

6 until Stopping criteria;



41

INTRODUCTION REVIEW OF BASIC PROBABILITY LAYERED NEURAL NETWORKS HELMHOLTZ MACHINE

INSIGTHS

I The restricted Boltzmann machine shares some core
concepts:

I It is a generative model
I Two training phases (positive and negative)
I Based on energy functions

I Boltzmann machines use symmetrical weights for
recognition and reconstruction whereas in Helmholtz
machines the weights organization is different
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INSIGTHS

I There is a theory that dreams are samples from a
generative model that we generate in order to train the
model to be better

I It happens with the RBM, HM and GANs

I So, GANs are also related to the wake-sleep procedure
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NEXT STEPS

I Is the RBM a better model than HM?
I What is the relationship between algorithm wake-sleep and

contrastive divergence? Which one is better?

I Is it possible to use some concepts from the wake-sleep to
improve the CNN training phase?

I CNN-RBM-ELM

I Is the capsule network related to RBM and HM training
phase?
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