

An approach to improve online sequential extreme learning machines using restricted Boltzmann machines

Andre G. C. Pacheco

Renato A. Krohling

July 10, 2018

- 1. Introduction
- 2. A background on ELM and RBM
- 3. Experimental results
- 4. Conclusion

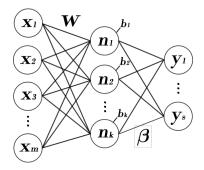
- The extreme learning machine (ELM) is a straightforward approach to handle single-hidden layer feedforward neural network (SLFN)
- Although it is a very fast approach and may provide a good generalization, two shortcomings can be pointed:
 - It does not allow sequential learning
 - It assigns the input weights randomly

- To tackle the sequential learning issue, the online sequential ELM (OS-ELM) was proposed
 - It is able to learn from a block of data with fixed or varying size
- Different approaches have been proposed to improve the OS-ELM
- However, none of them handle the input weights

- Recently, we proposed an approach to determine the ELM input weights using the Restricted Boltzmann Machine (RBM)
 - This approach is called RBM-ELM
 - It achieves good results for different datasets
 - Nonetheless, it does not allow sequential learning
- In this work, we extend the RBM-ELM by combining it with the OS-ELM to create the RBM-OS-ELM
 - It is faster than the RBM-ELM
 - For most datasets, it achieves a better performance than the OS-ELM.

Extreme Learning Machine (ELM)

 The ELM was developed specifically to handle SLFN architecture



Extreme Learning Machine (ELM)

• All network values are model as matrices:

$$\mathbf{x} = [x_1, \cdots, x_m, 1] \quad \mathbf{W} = \begin{bmatrix} w_{11} & \cdots & w_{1k} \\ \vdots & \ddots & \vdots \\ w_{m1} & \cdots & w_{mk} \\ b_1 & \cdots & b_k \end{bmatrix}$$
(1)
$$\beta = \begin{bmatrix} \beta_{11} & \cdots & \beta_{1s} \\ \vdots & \ddots & \vdots \\ \beta_{k1} & \cdots & \beta_{ks} \end{bmatrix} \quad \mathbf{y} = [y_1, \cdots, y_s]$$

- From ${\bf W}$ we compute the feature map ${\bf H}$

$$\mathbf{h}^{i} = [x_{1}^{i}, \cdots, x_{m}^{i}, 1] \times \begin{bmatrix} w_{11} & \cdots & w_{1k} \\ \vdots & \ddots & \vdots \\ w_{m1} & \cdots & w_{mk} \\ b_{1} & \cdots & b_{k} \end{bmatrix} \Rightarrow \mathbf{H} = \begin{bmatrix} f(\mathbf{h}^{1}) \\ f(\mathbf{h}^{2}) \\ \vdots \\ f(\mathbf{h}^{N}) \end{bmatrix}_{N \times k}$$
(2)

• The weight matrix β is obtained by solving the linear system:

$$\mathbf{H}\boldsymbol{\beta} = \mathbf{Y} \to \boldsymbol{\beta} = \mathbf{H}^{\dagger}\mathbf{Y} \tag{3}$$

where \mathbf{H}^{\dagger} is the Moore-Penrose generalized inverse of \mathbf{H}

- The OS-ELM is able to process blocks/batches of data when they become available
- The algorithm has two phases:
 - 1. Initialization phase
 - 2. Sequential phase

- Initialization phase: given a small block of the training data $(\mathbf{X}_0, \mathbf{Y}_0)$
 - 1. Assign the input weights \mathbf{W}_0 randomly and do not change it
 - 2. Compute \mathbf{H}_0 according the Eq. 3 and \mathbf{X}_0 and \mathbf{W}_0
 - **3.** Compute β_0 as follows:

$$\boldsymbol{\beta}_0 = \mathbf{P}_0 \mathbf{H}_0^T \mathbf{Y}_0, \text{ where}$$

$$\mathbf{P}_0 = (\mathbf{H}_0^T \mathbf{H}_0)^{-1}$$
(4)

- Sequential phase: given an arrived block of data $(\mathbf{X}_j, \mathbf{Y}_j)$
 - 1. Compute \mathbf{H}_j according the Eq. 3 and \mathbf{X}_j and \mathbf{W}_0
 - **2.** Compute β_j as follows:

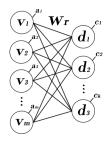
$$\beta_{j} = \beta_{j-1} + \mathbf{P}_{j} \mathbf{H}_{j}^{T} (\mathbf{X}_{j} - \mathbf{H}_{j} \beta_{j-1}), \text{ where}$$

$$\mathbf{P}_{j} = \mathbf{P}_{j-1} - \mathbf{P}_{j-1} \mathbf{H}_{j}^{T} (\mathbf{I} + \mathbf{H}_{j} \mathbf{P}_{j-1} \mathbf{H}_{j}^{T})^{-1} \mathbf{H}_{j} \mathbf{P}_{j-1}$$
(5)

 Every time a new block arrives, this phase is performed to adjust β

Restricted Boltzmann Machine (RBM)

- The RBM is an energy-based system that
 - It aims to learn the probability distribution
 - Unsupervised learning
 - ${\scriptstyle \bullet }$ ${\rm Visible} \; (v)$ and hidden (d) layers
 - Conection weights (\mathbf{W}_r) and the bias (a and b)



Restricted Boltzmann Machine (RBM)

The (v, d) configuration has an associated energy value defined by:

$$E(\mathbf{v}, \mathbf{d}; \boldsymbol{\theta}) = -\sum_{i=1}^{m} \frac{(v_i - a_i)^2}{2\sigma^2} - \sum_{j=1}^{k} c_j d_j - \sum_{i,j=1}^{m,k} \frac{v_i}{\sigma^2} d_j w_{ij}$$
(6)

where $oldsymbol{ heta} = (\mathbf{W}_r, \mathbf{a}, \mathbf{c})$

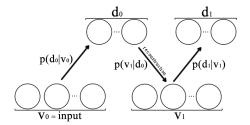
• From the energy, one computes the conditional probabilities:

$$p(d_j = 1 | \mathbf{v}; \theta) = \phi(c_j + \sum_{i=1}^m v_i w_{ij}), \text{ where } \phi(x) = \frac{1}{1 + e^{-x}}$$
(7)

$$p(v_i = v | \mathbf{d}; \boldsymbol{\theta}) = G(v | a_i + \sum_{j=1}^k d_j w_{ij}, \sigma^2), \qquad \text{where } G \text{ is the normal distribution}$$
(8)

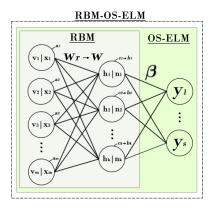
Restricted Boltzmann Machine (RBM)

- The contrastive divergence algorithm:
 - Usupervised algorithm
 - It uses k steps of Gibbs sampling algorithm
 - The Gibbs sampling is initialized with the training data



Restricted Boltzmann machine OS-ELM (RBM-OS-ELM)

- The algorithm's main idea:
 - Updating \mathbf{W}_0 for every training data block using the RBM
 - ${\tt \ \ }$ In brief, ${\bf W_r} \rightarrow {\bf W_0}$ and ${\bf c} \rightarrow {\bf b}$



• We used two type of datasets:

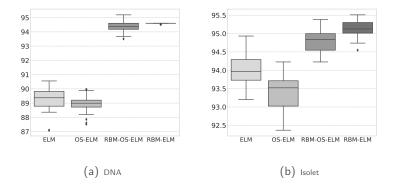
Common dataset	Samples	Features	Labels	Permutation
Credit Australia	690	14	2	Yes
Diabetic	1151	19	2	Yes
DNA	3186	180	3	No
Isolet	7797	617	26	No
Madelon	2600	500	2	Yes
MNIST	70000	784	10	No
Spam	4601	57	2	Yes
Urban land cover	675	147	9	Yes
Large dataset	Samples	Features	Labels	Permutation
Covertype	581012	54	7	Yes
Higgs	11×10^6	28	2	Yes
Susy	5×10^6	18	2	Yes

• The algorithms' performance for common datasets:

Database -	ELM		OS-ELM		RBM-OS-ELM		RBM-ELM	
	Accuracy (%)	Time (sec)						
Credit Australia	85.732 ± 2.292	0.004	86.731 ± 1.979	0.006	86.199 ± 1.877	0.010	86.070 ± 1.960	0.380
Diabetic	74.415 ± 2.562	0.010	73.478 ± 2.330	0.013	74.241 ± 2.529	0.075	75.323 ± 1.996	0.442
DNA	89.232 ± 0.827	0.146	88.943 ± 0.622	0.104	94.356 ± 0.353	1.397	94.592 ± 0.028	3.279
Isolet	94.032 ± 0.385	3.738	93.386 ± 0.503	3.240	94.766 ± 0.310	5.175	95.135 ± 0.218	23.342
Madelon	55.393 ± 1.732	0.129	55.521 ± 1.529	0.094	65.487 ± 1.441	3.096	82.286 ± 1.139	9.706
MNIST	91.191 ± 0.251	15.514	91.154 ± 0.221	10.375	93.993 ± 0.450	32.122	96.155 ± 0.091	101.941
Spam	91.178 ± 0.899	0.096	90.166 ± 0.921	0.085	90.582 ± 0.692	0.293	91.137 ± 0.696	1.715
Urban land cover	76.288 ± 2.860	0.044	75.303 ± 3.233	0.035	77.502 ± 2.419	0.082	80.098 ± 2.589	2.161

Experimental results

• The algorithms' performance for common datasets:

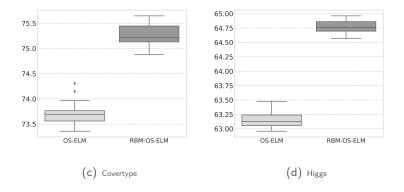


• The algorithms' performance for large datasets:

Dataset	OS-ELM	Л	RBM-OS-ELM		
	Accuracy (%)	Time (sec)	Accuracy (%)	Time (sec)	
Covertype	73.699 ± 0.200	34.765	75.271 ± 0.211	56.842	
Higgs	63.155 ± 0.136	529.32	64.975 ± 0.104	1008.35	
Susy	78.694 ± 0.098	245.436	79.709 ± 0.045	540.143	

Experimental results

• The algorithms' performance for common datasets:



Conclusion

- The RBM-OS-ELM uses a straightforward idea to improve the OS-ELM
- Experimental results show that the proposed approach is able to improve the OS-ELM for most datasets
 - On the other hand, the OS-ELM is around two times faster than it
- It is a compromise between accuracy and computational time. If we have:
 - Hardware, time and the data is available at once ightarrow RBM-ELM
 - Time and the data is sequential \rightarrow RBM-OS-ELM
 - All factors are very important \rightarrow **OS-ELM**

- A. Pacheco would like to thank the financial support of the Brazilian agency CAPES
- R. Krohling thanks the financial support of the Brazilian agency CNPq under grant n. 309161/2015-0 and the local Agency of the state of Espirito Santo FAPES under grant n. 039/2016

[1] G.B. Huang, Q.Y. Zhu, and C.K. Siew, "Extreme learning machine: a new learning scheme of feedforward neural networks". IEEE International Joint Conference on Neural Networks, vol. 2, pp. 985-990, 2004.

[2] N.Y. Liang, G.B. Huang, P. Saratchandran, and N. Sundararajan, "A fast and accurate online sequential learning algorithm for feedforward networks", IEEE Transactions on neural networks, vol. 17, no. 6, pp. 1411–1423, 2006.

[3] G. E. Hinton and R. R. Salakhutdinov, "Reducing the dimensionality of data with neural networks". Science, vol. 313, no. 5786, pp. 504–507, 2006.

[4] A. G. C. Pacheco, R. A. Krohling, and C. A. S. da Silva, "Restricted Boltzmann machine to determine the input weights for extreme learning machines". Expert Systems with Applications, vol. 96, pp. 77–85, 2018.