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Introduction

• The extreme learning machine (ELM) is a straightforward
approach to handle single-hidden layer feedforward neural
network (SLFN)

• Although it is a very fast approach and may provide a good
generalization, two shortcomings can be pointed:

◦ It does not allow sequential learning
◦ It assigns the input weights randomly
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Introduction

• To tackle the sequential learning issue, the online sequential
ELM (OS-ELM) was proposed

◦ It is able to learn from a block of data with fixed or varying size

• Different approaches have been proposed to improve the
OS-ELM

• However, none of them handle the input weights
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Introduction

• Recently, we proposed an approach to determine the ELM
input weights using the Restricted Boltzmann Machine
(RBM)

◦ This approach is called RBM-ELM

◦ It achieves good results for different datasets

◦ Nonetheless, it does not allow sequential learning

• In this work, we extend the RBM-ELM by combining it with
the OS-ELM to create the RBM-OS-ELM

◦ It is faster than the RBM-ELM

◦ For most datasets, it achieves a better performance than the
OS-ELM.
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Extreme Learning Machine (ELM)

• The ELM was developed specifically to handle SLFN
architecture
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Extreme Learning Machine (ELM)

• All network values are model as matrices:

x = [x1, · · · , xm, 1] W =


w11 · · · w1k

...
. . .

...
wm1 · · · wmk

b1 · · · bk


β =

β11 · · · β1s

...
. . .

...
βk1 · · · βks

 y = [y1, · · · , ys]

(1)

• From W we compute the feature map H

hi = [xi
1, · · · , x

i
m, 1]×


w11 · · · w1k

...
. . .

...
wm1 · · · wmk

b1 · · · bk

⇒ H =


f(h1)
f(h2)

...
f(hN )


N×k

(2)
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Extreme Learning Machine (ELM)

• The weight matrix β is obtained by solving the linear system:

Hβ = Y→ β = H†Y (3)

where H† is the Moore-Penrose generalized inverse of H
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Online sequential ELM (OS-ELM)

• The OS-ELM is able to process blocks/batches of data when
they become available

• The algorithm has two phases:
1. Initialization phase
2. Sequential phase
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Online sequential ELM (OS-ELM)

• Initialization phase: given a small block of the training data
(X0, Y0)

1. Assign the input weights W0 randomly and do not change it
2. Compute H0 according the Eq. 3 and X0 and W0
3. Compute β0 as follows:

β0 = P0HT
0 Y0, where

P0 = (HT
0 H0)−1

(4)
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Online sequential ELM (OS-ELM)

• Sequential phase: given an arrived block of data (Xj , Yj)
1. Compute Hj according the Eq. 3 and Xj and W0
2. Compute βj as follows:

βj = βj−1 + PjHT
j (Xj −Hjβj−1), where

Pj = Pj−1 −Pj−1HT
j (I + HjPj−1HT

j )−1HjPj−1

(5)

• Every time a new block arrives, this phase is performed to
adjust β
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Restricted Boltzmann Machine (RBM)

• The RBM is an energy-based system that
◦ It aims to learn the probability distribution

◦ Unsupervised learning

◦ Visible (v) and hidden (d) layers

◦ Conection weights (Wr) and the bias (a and b)
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Restricted Boltzmann Machine (RBM)

• The (v, d) configuration has an associated energy value
defined by:

E(v,d; θ) = −
m∑

i=1

(vi − ai)2

2σ2 −
k∑

j=1

cjdj −
m,k∑

i,j=1

vi

σ2 djwij (6)

where θ = (Wr,a, c)

• From the energy, one computes the conditional probabilities:

p(dj = 1|v; θ) = φ(cj +
∑m

i=1 viwij), where φ(x) = 1
1+e−x (7)

p(vi = v|d; θ) = G(v|ai +
∑k

j=1 djwij , σ
2), where G is the normal distribution

(8)
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Restricted Boltzmann Machine (RBM)

• The contrastive divergence algorithm:
◦ Usupervised algorithm

◦ It uses k steps of Gibbs sampling algorithm

◦ The Gibbs sampling is initialized with the training data
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Restricted Boltzmann machine OS-ELM (RBM-
OS-ELM)

• The algorithm’s main idea:
◦ Updating W0 for every training data block using the RBM

◦ In brief, Wr →W0 and c→ b
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Experimental results

• We used two type of datasets:

Common dataset Samples Features Labels Permutation
Credit Australia 690 14 2 Yes

Diabetic 1151 19 2 Yes
DNA 3186 180 3 No
Isolet 7797 617 26 No

Madelon 2600 500 2 Yes
MNIST 70000 784 10 No
Spam 4601 57 2 Yes

Urban land cover 675 147 9 Yes
Large dataset Samples Features Labels Permutation

Covertype 581012 54 7 Yes
Higgs 11× 106 28 2 Yes
Susy 5× 106 18 2 Yes
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Experimental results

• The algorithms’ performance for common datasets:
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Experimental results

• The algorithms’ performance for common datasets:
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Experimental results

• The algorithms’ performance for large datasets:

Dataset
OS-ELM RBM-OS-ELM

Accuracy (%) Time (sec) Accuracy (%) Time (sec)

Covertype 73.699 ± 0.200 34.765 75.271 ± 0.211 56.842

Higgs 63.155 ± 0.136 529.32 64.975 ± 0.104 1008.35

Susy 78.694 ± 0.098 245.436 79.709 ± 0.045 540.143
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Experimental results

• The algorithms’ performance for common datasets:
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Conclusion

• The RBM-OS-ELM uses a straightforward idea to improve the
OS-ELM

• Experimental results show that the proposed approach is able
to improve the OS-ELM for most datasets

◦ On the other hand, the OS-ELM is around two times faster
than it

• It is a compromise between accuracy and computational time.
If we have:

◦ Hardware, time and the data is available at once → RBM-ELM

◦ Time and the data is sequential → RBM-OS-ELM

◦ All factors are very important → OS-ELM
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