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Abstract
Skin cancer represents the most common group of malignant neoplasms in the white
population around the world. In Brazil, it is one of the most serious public health issues.
Malignant lesions at an early stage have more favourable conditions for being treated,
and that is why early diagnosis is crucial to higher survival probability. In general, the
diagnosis has two phases, first there is a screening step, then, the dermatologists search
for certain features in the patient. In order to improve the diagnosis rate, dermatologists
use dermoscopy in the screening step. However, some regions in Brazil do not have
dermatologists available to the population. So, to help the dermatologists with tasks such
as pre-diganostic and establishing a priority order for specialized consultations, this work
proposes the use of a U-Net architecture combining color spaces, pre- and post-processing
to segment skin cancer. First, the performance of each combination is compared to other
works using a well-known dataset of dermoscopic images of skin lesions. Next, a case study
is carried out using images taken by smartphones from a dataset created for this work,
and the results with the same methodologies used before, including a transfer learning
process, are presented. To collect the data for this dataset, we started a partnership with
a dermatological assistance program (PAD) from Espírito Santo, in which we provided
a system to collect data from patients, and a smartphone application to collect the skin
cancer images.

Palavras-chaves: Skin cancer, Segmentation, U-Net, Conditional Random Fields, Color
spaces, Smartphones, Dataset.
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1 Introduction

Artificial intelligence (AI) has been a subject of great interest in the recent years.
According to a research by Stanford Artificial Intelligence Laboratory [1], the number of
AI papers produced each year has increased by more than nine times since 1996. Moreover,
the Scopus database contains over 200,000 papers with the key term "Artificial Intelli-
gence". These researches have impacted in different applications, such as natural language
processing, autonomous cars, data security, financial trading, marketing personalization
and health care. This work focuses on the specific health care area of skin cancer. Early
works using computers to automate pigmented skin cancer diagnosis have appeared in
1987 [2]. With the advance of AI, researchers started to use machine learning techniques to
get better results. One example is the use of deep neural networks to classify skin cancer
in a recent work by Stanford researchers [3], in which the automated diagnosis accuracy
obtained is comparable to the dermatologist accuracy.

1.1 Overview
Skin cancer is the uncontrolled growth of abnormal cell in the skin. It occurs when

unrepaired DNA damage to skin cells triggers mutations, or genetic defects, that lead the
skin cells to multiply rapidly. It may be divided into two different categories, melanoma
and non-melanoma skin cancer (NMSC). Basal cell carcinoma (BCC) and squamous cell
carcinoma (SCC) are examples of NMSC and they represent almost every skin cancer
occurrence. Nevertheless, they have low lethality risk due to rarely metastasize. On the
other hand, melanoma has high levels of metastasis and it is the most harmful type of
skin cancer [4].

According to the International Agency for Research on Cancer (IARC), melanoma
was the 19th most common cancer worldwide in 2012, with more than 200,000 incidents
and 55,488 deaths [5]. In Brazil, 85,170 new cases of NMSC, and 6,260 new cases of
melanoma were estimated to be diagnosed in 2018 [6]. In 2015, 1,794 deaths in Brazil were
caused by melanoma and 1,958 by NMSC. Even with low lethality risks, the higher NMSC
incidence justify it having more deaths than melanoma.

1.2 Problem description
Malignant lesions at an early stage have more favourable conditions for being

treated, and that is why early diagnosis is crucial to increase survival probability. In
general, the diagnosis consists of two phases, first there is a screening step, then, the
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Fig. 1. Example of dermatoscope, device used for dermoscopy.

dermatologists search for certain features in the patient. Such features for patients with
suspected skin cancer may be: history of the skin lesion (duration, history of change, pain,
itching and bleeding), skin type, sun exposure history, family ancestry, family history of
skin cancer and some background medical history [7]. In pigmented lesions suspicious for
melanoma it is usually used the ABCD-E rule [8], [9], in which the asymmetry, border
irregularity, colour, diameter, enlarging and other features are the essentials features for
the diagnostic [7]. In addition, there are some others scoring methods like the seven-point
checklist [10], [11], three-point checklist [12], and Menzies [13]. Also, in order to improve
the diagnosis rate, dermatologists use dermoscopy in the screening step. Dermoscopy is a
non-invasive diagnostic technique that links clinical dermatology and dermatopathology by
enabling the visualization of morphological features which are not discernible by screening
with the naked eye [14]. An example of dermatoscope1, used for dermoscopy, is shown in
Fig. 1.

1.3 Motivation
The state of Espírito Santo has a dermatological assistance program (PAD, in

portuguese, Programa de Assistência Dermatológica) since 1989. It is organized by the
Federal University of Espirito Santo (UFES) in partnership with State Department of
Health, Non-governmental organization Martin Luther (AAML, in Portuguese, Associacao
Albergue Martim Lutero), city halls, municipal secretaries of Health and local parishes.
1 instrument used in dermoscopy to allow the visualization of the subsurface structures of the skin

revealing lesion details in colors and textures. https://www.healthandcare.co.uk/schuco-dermatoscopes-
accessories/schuco-dermlite-fluid-dermatoscope.html

https://www.healthandcare.co.uk/schuco-dermatoscopes-accessories/schuco-dermlite-fluid-dermatoscope.html
https://www.healthandcare.co.uk/schuco-dermatoscopes-accessories/schuco-dermlite-fluid-dermatoscope.html
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The program usually happens once in a month in a weekend and it takes place in 11
different countryside cities of the state. Usually, the population of these places cannot
afford a medical treatment, as they, in general, are low incoming and the nearest specialist
would take hours of travel. Then, dermatologists, plastic surgeon, and medical students
are the ones responsible for going to these places and taking care of the patients, providing
medical care for the needy community. In 2017, each city had on average 300 people
attended by the program. Therefore, since 1989, thousands of lives were saved through
this program, which provides a full treatment, from the screening to the surgical process.

As previously mentioned, some regions in Brazil do not have dermatologists available
to the population. In addition, the availability of a dermatoscope is even more difficult as
it is a costly device. These factors make it difficult, and sometimes impossible, to diagnose
skin cancer with a good accuracy. Therefore, there was a motivation to develop a method
that uses data that are not from dermatoscope. Since smartphones became a common tool
among the population, it was proposed the development of a method that helps in the
process of diagnosing skin cancer using images taken by smartphones. As segmentation
is one of the first steps in the diagnosis, and can be used to generate essential features
for the classification stage, such as some of the ABCD-E rule features, it was the stage
studied in this work.

1.4 Objectives and expected results
This work proposes a methodology for skin cancer segmentation that uses a U-net

architecture, a combination of color spaces and, in order to improve the segmentation results,
the conditional random fields (CRF) as a post-processing tool. First, the performance of
the methodologies is compared to other works using a well-known dataset of dermoscopic
images of skin lesions. Next, a case study is done using images taken by smartphones. This
type of image has several difficulties, such as zoom, angle and lighting, making detection
substantially more challenging. Inspired by the good results of the deep learning approaches,
this work studies the application of these methodologies in the dataset collected in the
PAD.

1.5 Related works
The use of computer-aided diagnosis (CAD) systems for skin cancer analysis has

been investigated in the last years and has proved to be a promising tool. Masood and
Al-Jumaily [15] make a review of techniques and algorithms of CAD systems for skin
cancer. The main proposal of those systems is to detect and extract features from the
lesion, and occasionally classify the disease. This process includes four important stages
namely pre-processing, segmentation, feature extraction and classification. Methods for
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these steps are proposed in [3], [16]–[25], and a review is made in [26]. A CAD system
needs to have some data as input. Usually, the input is one of the several types of imaging
methods such as cutaneous photography, dermoscopy, confocal scanning laser microscopy,
ultrasound, magnetic resonance imaging, optical coherence tomography, and multispectral
imaging. The most common in the literature is the use of dermoscopic images, as in
[16]–[21], [24], [25]. However, as mentioned before, most cities in countryside do not have
dermatoscope. Therefore, the use of standard camera images is relevant, and some works
got first results using it, as in [3], [22], [23].
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2 Background on deep learning to segmenta-
tion

This chapter presents a theoretical foundation of the techniques used in this work.
First, the pre-processing used in this paper is presented, along with a description of some
difficulties present in skin cancer images. Next, it is described the concept of segmentation
and how it is used in the domain of skin cancer images. Then, the artificial neural networks,
together with the convolutional networks, are introduced, followed by the architecture
used in this work. Also, some techniques to improve deep learning are detailed. Finally,
the post-processing used in this work is presented.

2.1 Pre-processing
Computer aided systems for the diagnosis of skin cancer must differentiate the

lesion from the healthy skin to work well. As shown in Fig. 2(a), transitions between
lesion and skin around are almost imperceptible, making it hard to detect the lesion. Skin
cancer images may also contain artifacts, such as hairs in Fig. 2(b), reflections in Fig.
2(c), shadows, skin lines and ink markings in Fig. 2(d), which may affect the accuracy of
the image segmentation. So, it is important to have a pre-processing step to improve the
segmentation.

In order to solve those problems, the first step is to choose between scalar (single
channel) and vector (multichannel) processing. In scalar processing, the original image
is converted to some single channel image such as grey-level image or only one channel
of the image. In vector processing, the original RGB image may be used or converted to
other color spaces, such as CIE L*a*b, CIE L*u*v, and HSV spaces. These color spaces
are commonly used in literature, since they ensure approximate perceptual uniformity and
achieve invariance to different imaging conditions such as viewing direction, illumination
intensity, and highlights [16]. In this work, a combination of color spaces is made and
described in Sec. 3.2, and its results are compared in Sec. 4. As described in Sec. 4.1,
the images from the PAD dataset were also cropped to separate the lesion from other
information in the images.

2.2 Segmentation
The main goal of segmentation is to partition the image into mutually exclusive

regions to which can be subsequently attached meaningful labels [27]. In traditional
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(a) Smooth transition (b) Hair

(c) Reflection (d) Ink marking

Fig. 2. Problems in skin cancer images.

systems, segmentation is the most important phase, as the whole process depends on how
good it can detect the region of interest (ROI) of an image. In this work, the skin cancer
is the ROI of the images. Fig. 3 presents some examples of segmentation, in which the
contour represents the region of interest desired for each sample. It is desirable that the
segmentation obtained by the algorithm is the closest to these regions of interest.

In the past, segmentation was essentially an unsupervised task, depending only on
the input image to work, as the techniques described in Sec. 2.2.2. However, nowadays deep
learning techniques are getting good results for this task, as described in Sec. 1.5. And,
it is known that most algorithms based on machine learning have a supervised learning
process, making the task dependent on the availability of a ground truth.

2.2.1 Supervised segmentation

Supervised segmentation algorithms require the ground truth of the images to
work properly. In other words, in case of skin cancer segmentation, a specialist needs
to determine where the lesion is in each image, as in the example shown in Fig. 4. The
algorithms use the prior knowledge of the training set to learn how to generalize the
targeting task. One of the most effective types of supervised algorithm is artificial neural
networks (ANN) [28].
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Fig. 3. Segmentation examples from the datasets used in this work. The first six images,
from top to bottom, are from the ISIC 2017 Challenge dataset, and the last three
images are from PAD dataset. The yellow line delimits the ROI of each image.

2.2.2 Unsupervised segmentation

Unlike supervised segmentation, unsupervised methods do not need a ground truth
to work. These methods can be divided into some categories such as the border-based
and region-based categories. Methods in these categories use respectively edge operators
and region splitting or merging algorithms for segmentation [30], [31]. In addition, there
are some methods based on histogram thresholding, which define a threshold value to get
the region of interest. The Otsu [32] threshold method is one of the most used. Finally,
there are algorithms based on active contours in which the initial curves move toward the
boundary region of interest [33], [34].

2.3 Artificial neural network
An artificial neural network (ANN) is a massively parallel distributed processor

made up of simple processing units, which has a natural propensity for storing experiential
knowledge and making it available for use [35]. The most ANN models are compound by
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Fig. 4. Examples of ground truth for skin cancer images. In the top there is an example
using ISIC 2017 Challenge dataset [29] and in the bottom using PAD dataset. The
left image is the original one, and the right image is the ground truth.

artificial neuron, shown in Fig. 6. The output of the the neuron is described by Eq. 2.1

y = f(
m∑
i

xiwi + b) (2.1)

where x are the inputs, w are the weights, b is the bias and f is the activation function.

An activation function that has become very popular is the ReLU (Rectified Linear
Unit), described by Eq. 2.2 and illustrated in Fig. 5.

f(x) = max(0, x) (2.2)

Fig. 5. ReLU activation function.

However, other activation functions such as the sigmoid and the tanh, respectively
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described by Eqs. 2.3 and 2.4, are also used.

f(x) = 1
1 + e−x

(2.3)

f(x) = 2
1 + e−2x − 1 (2.4)

Fig. 6. The perceptron neuron model’s representation [36]

The ANN architecture is divided in three different layers: input, hidden and output.
The input and output layers represent respectively the data fed to the network and the
resulting output in the problem context. The hidden layer is an essential part of an ANN,
it is connected to the input layer and to another layer, which can be also a hidden layer,
or, as shown in Fig. 7, an output layer. The best number of hidden layers is a currently
studied subject and usually it is empirically determined [37].

Fig. 7. A feedforward neural network representation [38]. The information always flows
from the input nodes, through the hidden nodes to the output nodes.

Feedforward Neural Networks are a type of ANN where the information goes only
in one way. So, the neurons in one layer can only affect the neurons in the next layer,
having no feedback in this architecture. The ANN shown in Fig. 7 is a feedforward network
with only one hidden layer.

In general, ANN learns from data how to generalize a function. So, given an input,
the network should return a result close to the expected value. To do so, it is necessary a
learning algorithm to determine the best weights and bias values to the architecture. The
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most common learning algorithm is the backpropagation [39], described by the pseudocode
in Algorithm 1. The main idea of this algorithm is to adjust the connection weights of the
network aiming to minimize a loss function using the gradient descent. A common loss
function used is the mean square error, described in Eq. 2.5. The gradient is the partial
derivative of this measure with respect to the weights of the network, as described in Eq.
2.6.

E = 1
T

T∑
t=1

(ŷt − yt)2 (2.5)

∆W = −α ∂E
∂W

(2.6)

where T is the number of samples in the dataset, ŷ is the expected output, y is the actual
output of the network, W is the weight matrix and α is the learning rate. Therefore, the
weight matrix is updated with Eq. 2.7 several times until a stopping criteria is met.

W = W + ∆W (2.7)

Algorithm 1 backpropagation
1: procedure Backpropagation(T,N, k, α)
2: T is the pairs input and output
3: N is the number of hidden layers and k the number of hidden neurons for each

layer
4: α is the learning rate
5: while stopping criteria is not met do
6: for each sample of T do
7: for each connection weight w do
8: calculate ∆W with Eqs. 2.5 and 2.6.
9: update W with Eq. 2.7

10: return trained weights and bias

2.4 Convolutional neural network
Convolutional neural networks (CNN) are a special type of ANNs. They are

composed by neurons that have learnable weights and biases, and also have a differentiable
measure function. However, CNN considers the spacial distribution to take advantage of
the fact that the input is usually an image, which have high correlation between pixels.
The CNN architecture contains three main types of layer: convolutional layer, pooling
layer, and fully-connected layer. Le Cun et al. [40] developed LeNet-5, a pioneering CNN
architecture to handwritten digit recognition. The architectures from the original work is
illustrated in Fig. 8. The LeNet-5 has seven layers, not counting the input. The input is
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a 32× 32 pixel image. The convolutional layers are labeled Cx, the subsampling layers
are labeled Sx, and fully-connected layers are labeled Fx, where x is the layer index. The
first layer, C1, is a convolutional layer with six feature maps of size 28× 28. Next, there
is S2, which is a subsampling layer with six feature maps of size 14 × 14. Layer C3 is
a convolutional layer with 16 features maps of size 10 × 10. Layer S4 is a subsampling
layer with 16 feature maps of size 5. Layer C5 is a convolutional layer with 120 feature
maps of size 1× 1. Layer F6 contains 84 units and is fully connected to C5. Finally, the
output layer is composed of Euclidean radial basis function units, one for each class, with
84 inputs each.

Fig. 8. The CNN architecture, LeNet-5, proposed by Le Cun et al. for digits recognition
[40]. Each plane is a feature map and the operations are described at the bottom.

2.4.1 Convolutional layer

The convolutional layer is responsible to extract features from the image. The
parameters in this layer consist of K learnable two dimensional filters, where each filter
has spatial size of F . During the forward pass, each filter is slided with stride of value
S across the width and height of the input volume and it is computed the dot products
between the entries of the filter and the input at any position. This process produces
a 2-dimensional activation map that gives the responses of each filter at every spatial
position. Sometimes it is convenient to pad the input volume with P zeros around the
border, allowing to control the spatial size of the output volumes. As such, the output
dimension is determined as:

D = (V − F + 2P )
S

+ 1 (2.8)

where V is the volume size of the input.

To exemplify the convolutional step, let us consider a image with V = 5 represented
by the blue matrix shown in Fig. 9. It is used a filter with dimension F = 3 and with its
values shown in the red matrix in Fig. 9. It is considered S = 1, there is no zero padding
(P = 0), and the bias is equal to one. The output dimension is calculated using Eq. 2.8,
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and it is D = 3. Some states of this process is illustrated in Fig. 9, and the resulting
output matrix is the green matrix shown in the final state.

Fig. 9. The convolutional process is exemplified in two states: initial state (top) and final
state (bottom). The blue matrix is the input matrix, the red matrix is the filter,
the yellow box is the bias and the green matrix is the output matrix. There is no
padding and the stride is equal to one.

2.4.2 Activation layer

Element-wise multiplication and summation are both linear operations that occur
during the convolutional layer. However, it is desirable to introduce non-linearity into
the system. And for this, it is common to have a non-linear layer (activation layer) just
after each convolutional layer. The activation layer consists of a nonlinear activation
function. The most common functions are: sigmoid, tanh and ReLU (Rectified Linear
Unit). In convolutional networks, ReLU is usually used as an activation function due to
its computational efficiency. Its mathematical formulation is described in Eq. 2.2, and its
graph is illustrated in Fig. 5.
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2.4.3 Pooling layer

After convolution, it is common to insert a pooling layer to reduce the dimensionality
of each feature map, control overfitting, and help reduce the translation invariance. There
are some types of spatial pooling, such as max, average and sum. The most common is the
max pooling, in which it is defined a spatial neighborhood and the largest element is took
from the rectified feature map within this window. A new matrix is used to exemplify this
step using a 2× 2 window with a stride equals 2. As shown in Fig. 10, each little 2× 2
square with different color generate a max number in a resultant matrix.

Fig. 10. Example of pooling operation using the max pooling with 2× 2 filter and stride 2.
The maximum value of each 2× 2 colored square is selected for the output matrix
in the position with the same color as the square.

2.4.4 Fully-connected layer

In order to execute tasks such as classification, the network has to be able to
generate probabilities of a certain class for each input. So, after detecting high level
features, usually it is attached a fully-connected (FC) layer to the end of the CNN, as
in LeNet-5 architecture shown in Fig. 8. The way the fully-connected layer works is that
it examines the output of the previous layer, since it has connections to all the previous
activations, and determines which features are most correlated to a given class. The output
of this layer is a N dimensional vector where N is the number of classes of the domain,
and each value in this vector represents a probability of a given class.

2.4.5 Batch normalization

As described in Sec. 3.5, the architecture used in this work uses batch normalization
after each convolutional layer, as well as after concatenation with the result of the
convolution transposed. Batch normalization was initially proposed to reduce the internal
covariate shift, which is caused by the distribution change of each layer’s input as the
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network parameters change during training [41]. This reduction allows the use of a higher
learning rate and to be less careful about initialization, improving the training time.
However, Santurkar et al. [42] recently state in their work that the advantage of using
batch normalization is not related to the reduction of internal covariate shift, but to the
smoothing of the optimization landscape, making the gradient more predictable and stable,
decreasing the training time.

2.5 Fully convolutional networks

2.5.1 Overview

Fully Convolutional Network (FCN) is a specific type of CNN, where the final fully-
connected layer is replaced by a convolutional layer. It started to receive attention after the
good results in segmentation tasks in [43]. Since it was proposed for semantic segmentation,
it is desirable that the final output layer has the same height and width as the input
image, and the number of channels needs to be equal to the number of classes segmented.
However, as shown in Fig. 11, as the image goes through the convolutional and pooling
layers, the width and the height of the image are reduced. In order to have an output
segmentation with the same size of the input, FCNs use the backward convolution called
transposed convolution [43]. The transposed convolution, initially called deconvolution,
had its first appearance, without receiving a specific name, in [44]. Next, in a later work
by the same author, the term deconvolution layer was defined [45]. It can be used as a
method of upsampling the pixels without a predefined interpolation method, as in Fig.
11. One way of implementing the transposed convolution is by reversing the forward and
backward passes of the convolution, as described in [43]. Thus, in the same way as the
convolutional layers, the transposed convolution also has weights that will be trained by
the backpropagation. An excellent visual demonstration of the transposed convolution is
done in [46], where the technique is discussed in more depth.

Fig. 11. The fully convolutional network presented in [43].
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2.5.2 U-Net

The U-Net was first proposed by Ronneberger et al. [21] for biomedical image
segmentation. The architecture is an extension of the fully convolutional network. As
described previously, the upsampling layers in FCN increase the resolution of the output.
The main idea in U-Net is to combine the high resolution features from the contracting
path with the upsampled output. This process allows the network to propagate context
information to higher resolution layers, making the expansive path symmetric to the
contracting path as shown in Fig 12. The U-Net architecture used in this work has a
different number of layers than originally proposed, however the main concept of the
network is maintained. Sec. 3.5 describes the architecture used in greater detail.

Fig. 12. U-Net architecture proposed by Ronneberger et al. [21]. Each blue box corresponds
to a multi-channel feature map. The number of channels is on top of the box. The
x-y-size is at the lower left edge of the box. The white boxes represent copied
feature maps.

2.6 Transfer learning
When using deep learning techniques like CNN, the amount of data available should

be large enough for the algorithm to learn the essentials features from the domain. However,
there are some cases where the data acquisition is hard or costly, as in medical domains.
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Transfer learning (TL) is the concept that tries to learn from a source domain where there
are easier conditions, for example, more data or computational resource available, and
transfer the knowledge for a target domain [47]. In case of convolutional neural networks,
there are different types of TL, and it depends on the source and target datasets and
how they are related [48]. When there is a small target dataset and it is similar to the
base dataset, the most appropriated TL is to copy all the convolutional layers trained
from the base network to the target network and freeze them. Then, the fully-connected
layer is trained from the scratch with the target dataset. Another way of TL is to copy
from the base network just the shallower convolutional layers and freeze them, while all
the others layers are trained from the scratch. This is motivated by the fact that the
first convolutional layers retain more generalized features from the images, such as color,
texture and edges, while deeper layers parameters attempt to captures specific features
from the target domain [49]. The choice of freezing or not some layers depends on the size
of the target dataset and the number of parameters in the layers. If the target dataset
is small and the number of parameters is large, fine-tuning the parameters can lead to
overfitting, so it is better to let them frozen. On the other hand, if the target dataset
is large, overfitting is not a problem, and fine-tuning the parameters may lead to better
performances.

2.7 Data augmentation
Working in the same direction as transfer learning, data augmentation also attempts

to improve the training phase in domains where there is insufficient data. The importance
of increasing data for the analysis of skin cancer was shown in a work by the RECOD
Lab, where 13 different data augmentation scenarios were investigated [50]. The scenarios
include traditional color and geometric transforms, elastic transforms, random erasing
and a novel augmentation that mixes different lesions. These scenarios are shown in Fig.
13. For this work, only some of the techniques presented in the RECOD Lab work were
selected and are described in Sec. 3.3.

2.8 Conditional random fields
Although the use of fully convolutional networks has performed very well in

segmentation tasks, the predictions from this type of model are still quite coarse, since
the max-pooling stages in earlier parts of the network resulted in the loss of many spatial
information. As a result, fine structures and object boundaries are usually poorly segmented
[51]. Also, there are some times where the pixel is classified as an incorrect label in the
middle of a blob of pixels from another label. However, we know that skin cancers are
usually continuous and nearby pixels are likely to be part of the same object. Conditional
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Fig. 13. Data augmentation scenarios presented in [50]. The scenarios can be defined from
A to M in alphabetical order as: A - no augmentation; B - saturation, contrast
and brightness; C - saturation contrast brightness and hue; D - affine; E - flips; F
- random crops; G - random erasing; H - elastic; I - lesion mix; J - basic set; K -
basic set + erasing; L - basic set + elastic; M - basic set + mix.

random fields (CRF) are models often used to help to improve performance of the final
segmentation is such cases.

CRF models complex structures consisting of a large number of interrelated parts.
For example, an image composed by separated pixels, in which there are some relations
between the pixels. Each pixel u has a set of possibles labels, such as lesion or non-lesion
in the skin cancer segmentation task. The main idea of CRF is to find a configuration x,
where each pixel has a specific label, in which the total energy is minimized. The total
energy is a combination between a unary and a pairwise energy. The unary energy ψu(xi),
or unary cost, is the cost to assign a label x to the pixel i. This cost is obtained from the
final score of the CNN. The pairwise energy ψp(xi, xj), or pairwise cost, is used to model
interaction between pixels. The total energy is described by Eq. 2.9.

E(x) =
∑
i

ψu(xi) +
∑
i 6=j

ψp(xi, xj) (2.9)

where i and j are indexes for the pixels from the image.

As it was used the fully connected CRF proposed in [52], where every pixel is
related to every pixel in the image, the pairwise energy is described in Eq. 2.10.

ψp(xi, xj) = µ(xi, xj)k(fi, fj) (2.10)

where each of the vectors fi, and fj are feature vectors for pixels i and j in an arbitrary
feature space and µ is a label compatibility function.

For the segmentation task, the kernel function k(fi, fj) can be defined in terms of
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the color vectors Ii and IJ and positions pi and pj by the Eq. 2.11.

k(fi, fj) = w(1)exp(−|pi − pj|
2

2θ2
α

− |Ii − Ij|
2

2θ2
β

+ w(2)exp− |pi − pj|
2

2θ2
γ

(2.11)

where w(1) and w(2) are linear combination weights, exp(− |pi−pj |
2

2θ2
α
− |Ii−Ij |2

2θ2
β

) is inspired
by the fact that nearby pixels with similar color are likely to be in the same class. The
parameters θα and θγ control the nearness and similarity degree. The exp− |pi−pj |

2

2θ2
γ

part is
responsible to remove small isolated regions [52].

The compatibility function µ used is given by the Potts model, µ(xi, xj) = [xi 6= xj ],
where the cost is zero when two neighboring pixels have the same label, and λ if they have
different labels [52].
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3 Deep learning for skin cancer segmentation

This chapter details how the methods described in the Sec. 2 are used and combined
to segment skin cancer images. There are two datasets used in this work, the first one
is a public dataset provided by the International Skin Imaging Collaboration (ISIC) for
the ISIC 2017 Challenge [29]. The dataset contains 2,000 dermoscopic images for training
and 600 for testing, some examples from this dataset are shown in Fig. 14. As explained
before, dermatoscope is not available in most places in Brazil, and the easiest way of
capturing images would be using smartphones. However, training ML algorithms using
dermoscopic images, and testing using images taken from smartphones seems not to work
[53]. Therefore, to compare the results and ensure the difference between these types
of image, we started to create a new dataset containing clinical images acquired from
smartphones.

Fig. 14. Examples of desmoscopic images from the ISIC 2017 Challenge dataset [29].

3.1 PAD dataset
In the late of 2017, we started a partnership with the dermatological assistance

program (PAD), by providing a system able to collect data from patients, present statistics,
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and lesion tracking. To collect the images, a smartphone application was developed, and
the students used it over the year during the program. Some screens from the app are
shown in Fig. 15. It is all in Portuguese, because PAD occurs only in Brazil. Some of the
images collected using the application are shown in Fig. 16. All data collected is secure
and protected by password, and only allowed people can use the system. The app does
not store any image or data from the patients.

Fig. 15. Screens from the app developed for data collection. As the app is constantly
updated, the screens may have been changed since the final version of this work.
The data contained in these images are for illustrative purposes only.

As the deep learning algorithm used in this work has a supervised learning step, it
is needed to create a ground-truth for each image. Researchers from LABCIN and PAD
have used the experience acquired in the program to generate the masks for the entire
dataset. However, as said before, segmentation is a subjective task, and the ground-truth
created should be verified by specialists. But, as the creation of a dataset is a hard and
long task, in the moment of this work, there was not yet a dermatologist participation,
which can lead to some small divergences in the masks generated.

3.2 Color space combination
Color space is one of the first things to choose in a image segmentation problem. It

is responsible for representing an image by saving its information in some specific model.
The most common color space used in image processing is the RGB, which uses values
of Red, Green and Blue to represent the image. Besides the preference for RGB, some
works use others color spaces like HSV and CIE L*a*b [54]. The main justification in these
cases is that HSV and CIE L*a*b are invariant to different imaging conditions such as
illumination [16]. However, when using CNNs for segmentation, the color space with better
results is not well defined, and it varies in accord to the domain. Moreover, a recent work
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Fig. 16. Examples of skin cancers images from the PAD dataset. All the images were taken
from smartphones using the app developed.

showed that the performance of convolutional neural networks is color-sensitive [55]. So, to
define the best color space to this work domain, it is compared the RGB, HSV, CIE L*a*b
and, inspired by the first place of ISIC 2018 segmentation task [56], some combinations
between these spaces are also used. Fig. 17 shows the same image represented in different
color spaces.

3.3 Data augmentation
In this work, the data augmentation used was the Hue shift, horizontal flip, vertical

and horizontal shifts. The augmentation is done in training time, so each image is randomly
affected by the transformations in each epoch. Since some of the inputs are combinations
of color spaces, having more than three dimensions, the augmentation happens before
the color space transformation. That means that all augmentations are done in the RGB.
Next, each augmentation is described, and some examples using ISIC and PAD datasets
are shown in Figs. 18, 19 and 20. First, the Hue of the images were shifted by a value
sampled from a uniform distribution of [−0.1, 0.1]. The Hue can be thought of as the shade
of the colors in an image. This augmentation tries to prevent variations caused by how
different devices can capture colors in different ways.
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(a) RGB

(b) HSV

(c) CIE L*a*b

Fig. 17. For each color space, from left to right it is represented: the image composed by
the three channels illustrated as a RGB image; the first channel of the color space
in grayscale; the second channel; the third channel.

Fig. 18. In the top there are examples of random Hue shifts using ISIC 2017 Challenge
dataset and in the bottom using PAD dataset. The first image on the left is the
original one.

Next, each image was randomly flipped in the horizontal, increasing the robustness
against variability caused by the angle in which the photo was taken.

For the last, the images were shifted in vertical and horizontal by a random factor
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Fig. 19. In the top there is an example of horizontal flip using ISIC 2017 Challenge dataset
and in the bottom using PAD dataset. The image on the left is the original one.

between [−0.1, 0.1] of theirs original size.

Fig. 20. In the top there are examples of random vertical and horizontal shifts using ISIC
2017 Challenge dataset and in the bottom using PAD dataset. The first image on
the left is the original one.

3.4 Transfer learning
For transfer learning, the NN was first trained using the ISIC 2017 Challenge

dataset. Then, it was used the same approach of [22], [57] where all CNN layers were
fine-tuned using a learning rate 10 times smaller for the PAD dataset. Since the source
domain is composed by dermoscopic images, and the target domain composed by images
taken from smartphones, they have different characteristics, such as high variability caused
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by lighting, zoom and camera model. Also, as explained before, the ground-truth of the
datasets were obtained by different people, and it is known that segmentation is a very
subjective activity, which can lead to a biased ground-truth. These are the reasons why
fine-tuning seems to be needed for better learning the specifics features of the target
domain for segmentation.

3.5 U-Net architecture
The architecture used in this work is the U-Net architecture proposed in [21] with

some small changes in the number of layers and including batch normalization. The network
consists of two main paths, one for contraction and one for expansion. The contraction
path has several encoding blocks, where each block is composed by a convolution block
followed by a pooling layer of pool size 2 × 2. The convolutional block consists of two
sequences of convolutional layer, batch normalization and a ReLU activation layer. All
convolutional layers, except the last layer of the network, have 3× 3 filters, a padding such
that the output has the same length as the original input and a stride equal to 1. The
expansive path consists of decoding blocks, where each block is composed by a sequence
of transposed convolution, concatenation with the result from the contraction path, batch
normalization, and a convolutional block. All transposed convolutions have 2× 2 filters,
stride equal to 2 and a padding as the same type of the convolutional layers. The last
layer is a convolutional layer containing only one 1x1 size filter and a sigmoid activation
layer. Table 1 summarizes all the information described in this paragraph.
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Table 1 – The U-Net Architecture used in this work. The input of each block is described
in the Block Input column, where concatenated inputs are comma separated.

Block Layer/Block Filter size Block Input
Input data 256 x 256 x Channels - Image

Encoder 1 Conv. Block 1 3 x 3 x 32 Input dataMax Pooling 1 2 x 2

Encoder 2 Conv. Block 2 3 x 3 x 64 Encoder 1Max Pooling 2 2 x 2

Encoder 3 Conv. Block 3 3 x 3 x 128 Encoder 2Max Pooling 3 2 x 2

Encoder 4 Conv. Block 4 3 x 3 x 256 Encoder 3Max Pooling 4 2 x 2

Encoder 5 Conv. Block 5 3 x 3 x 512 Encoder 4Max Pooling 5 2 x 2
Center Conv. Block 6 3 x 3 x 1024 Encoder 5

Decoder 1 Transpose. Block 1 2 x 2 x 512 Center, Encoder 5Conv. Block 7 3 x 3 x 512

Decoder 2 Transpose. Block 2 2 x 2 x 256 Decoder 1, Encoder 4Conv. Block 8 3 x 3 x 256

Decoder 3 Transpose. Block 3 2 x 2 x 128 Decoder 2, Encoder 3Conv. Block 9 3 x 3 x 128

Decoder 4 Transpose. Block 4 2 x 2 x 64 Decoder 3, Encoder 2Conv. Block 10 3 x 3 x 64

Decoder 5 Transpose. Block 5 2 x 2 x 32 Decoder 4, Encoder 1Conv. Block 11 3 x 3 x 32
Output Conv. Layer 1 x 1 x 1 Decoder 5



40

4 Experimental results

In this chapter, it is explained how the experiments were executed, and the results
are presented. First, the ISIC 2017 Challange dataset is used and the results obtained are
compared to the best results in the competition. Next, a case study is investigated using
our own dataset created from PAD.

4.1 Pre-processing
Convolution neural networks can learn different types of filters, which is why they

are so powerful. Relying on this premise, no filtering will be done on the images. The
pre-processing done was cropping and resizing of the images, and the transformation of
the color space. For the PAD dataset, a problem found due to the collection of images
via smartphones was the freedom given to the user when taking the photo, even though
the app gives the option to crop the image. As a consequence, several photos were taken
outside of the standard, resulting in photos containing more than one lesion. So, it was
necessary to crop all the images so that none of this was contained in the dataset. In
addition, even though fully convoluted networks accept inputs of different sizes, all images
are resized to 256x256, reducing computational cost. Finally, as described in Sec. 3.2,
the images were converted to the chosen color space, i.e., RGB, HSV, CIE L*a*b and
combinations between them.

4.2 Metrics
To evaluate and quantitatively compare the methodologies proposed in this work,

we used some metrics widely used in the literature for segmentation [58]. Before defining
such metrics, it is necessary to introduce the concept of true positive (TP), true negative
(TN), false positive (FP) and false negative (FN) in the domain of this work. In the
segmentation of skin cancers, the lesions themselves are labeled as positive, and the part of
the image where there is no lesion as negative. As shown in Fig. 4, where the white color
represents the positive labels and the black the negative labels. Then, when a pixel is part
of the lesion (positive label), and the proposed method classifies it as being part of the
lesion (positive label), the so-called TP occurs. However, if the method classified this same
pixel as not being part of the lesion (negative label), a case of FN would occur because
the true pixel label is not negative. On the other hand, if a pixel is not part of the lesion
(negative label), and the method classifies it as not part of the lesion (negative label), the
TN occurs. However, if the method classified this same pixel as part of the lesion (positive
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label), the so-called FP would happen because the true pixel label is not positive.

Based on these concepts, the metrics used in this work can be defined. The first
one is the sensitivity (SEN), which indicates the proportion of the pixels that are part of
the lesion (positive label) and were correctly classified. The sensitivity is defined by the
Eq. 4.1.

SEN = TP

TP + FN
(4.1)

Following the same logic, the specificity (SPE) informs the proportion of the pixels
that are not part of the lesion (negative label) and were correctly classified. Eq. 4.2 defines
the specificity.

SPE = TN

TN + FP
(4.2)

Next, to provide a more general view of the segmentation quality, it is used the
accuracy (ACC), defined by Eq. 4.3.

ACC = TP + TN

TP + FN + TN + FP
(4.3)

Two other metrics commonly used to quantify the quality of segmentation are the
Dice coefficient (DIC) and the Jaccard index (JAC). The dice coefficient measures how
similar the segmentation of the lesions are when compared to the ground truths. The
Jaccard index, on the other hand, is the intersection over union of the segmented lesion
with the masks. The Jaccard index is the metric used to rank in the ISIC 2017 Challenge.
These metrics are defined in Eqs. 4.4 and 4.5 respectively.

DIC = 2.TP
(2.TP ) + FP + FN

(4.4)

JAC = TP

TP + FP + FN
(4.5)

4.3 Training
The training of the network was carried out for 80 epochs, with batch size equal to

8. For the ISIC dataset, it was used the training partition provided in the competition,
with 2.000 images. For the PAD dataset, the images were divided into 70% for training and
30% for testing. For all datasets, the training partition was divided into 80% for training
and 20% for validation, where the model is chosen only when validation improvement is
obtained. The tests using the PAD dataset were divided into three main methodologies.



Chapter 4. Experimental results 42

The first, called direct transfer, is when the network is trained with the ISIC dataset
(training + test) and tested directly with the PAD dataset. The second, called direct train,
is when the network is trained with the PAD dataset. Finally, the fine-tune methodology,
in which the network is trained with the ISIC dataset (training + test) and, with transfer
learning, a fine-tune is done with the PAD dataset, then the tests are performed. The
learning rate was set at 0.0001 for direct transfer and direct train methodologies, and at
0.00001 for fine-tune. The stochastic optimization method used was Adam, proposed in
[59]. It is common that in skin cancer images, mainly in images taken by smartphones,
the lesion occupies only a small portion of the image, which makes the number of positive
labels (lesion) much smaller than the number of negative labels (not lesion). Experiments
with unbalanced segmentations have shown that loss functions based on overlap measures
present better results and appears to be more robust [60]. Therefore, based on these results,
a combination between binary cross-entropy and dice loss is used for training the network
in this work. This combination is described by the Eq. 4.6 below:

loss = 1
N

N∑
n=1

y ∗ log(ŷ) + (1− y) ∗ log(1− ŷ) + 1−
∑N
n=1 y ∗ ŷ + ε∑N
n=1 y + ŷ + ε

(4.6)

where, 1
N

∑N
n=1 y ∗ log(ŷ) + (1− y) ∗ log(1− ŷ) is the binary cross-entropy, 1−

∑N

n=1 y∗ŷ+ε∑N

n=1 y+ŷ+ε
is the dice loss, N is the number of pixels, y and ŷ are respectively the expected label
and the score of a pixel, and ε is used to ensure the loss function stability by avoiding the
numerical issue of dividing by 0.

4.4 Software and hardware
All code was implemented in Python using the TensorFlow framework, and are

available at https://github.com/gabrielgiorisatto/segmentation_pad. The training and
tests were run on two different computers, one containing an Intel (R) Core i7-6700 CPU
@ 2.60 GHz, with 16 Gb of RAM and a NVIDIA GeForce GPU GTX 1070, and another
containing an Intel (R) Core i7-7700 CPU @ 3.60 GHz, with 16 Gb of RAM and a NVIDIA
Titan X GPU.

4.5 Results and discussions
In this section, it is presented the experimental results for the segmentation of skin

cancers using the methodology described in Sec. 3. The experiments are divided into two
parts. First, the ISIC 2017 Challenge dataset is used to perform the tests, and the results
are compared with the results obtained by:

https://github.com/gabrielgiorisatto/segmentation_pad
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• Al-masni et al. [25]: The work proposes a full resolution convolutional networks
(FrCN) method that learns the full resolution features of each individual pixel of the
input data without the need for pre- or post-processing operations such as artifact
removal, low contrast adjustment, or further enhancement of the segmented skin
cancer boundaries. A comparison for the ISIC 2017 Challenge dataset is made between
some latest deep learning segmentation approaches such as the fully convolutional
network (FCN), U-Net, and SegNet.

• Yuan [24]: This work got the first place in the ISIC 2017 Challenge. The author
proposes a framework based on deep fully convolutional-deconvolutional neural net-
works (CDNN). The network contains 29 layers with about 5M trainable parameters.
Besides the original RGB channels, the author also includes the three channels in
Hue-Saturation-Value color space, as well as the L channel (lightness) in CIELAB
space. The loss function used was based on Jaccard distance. For post-processing, it
was used a dual-thresholds method to generate a binary tumor mask from the CDNN
output. A relatively high threshold (thH = 0.8) was firstly applied to determine the
tumor center, which was calculated as the centroid of the region that has the largest
mass among the candidates from thresholding. Then a lower threshold thL = 0.5
was applied to the output map. After filling small holes with morphological dilation,
the final tumor mask was determined as the region that embraces the tumor center.
Finally, a bagging-type ensemble strategy was implemented to combine outputs of
6 CDNNs to further improve the image segmentation performance on the testing
images.

Next, a case study is done for the dataset collected during the dermatological
assistance program (PAD). Sec. 3.1 describes the PAD dataset in more details.

To compare the methodologies, it was used the nonparametric Friedman followed
by the Wilcoxon test. The Friedman test [61] verifies, in a group containing more than
one sample, whether there are at least two samples representing populations with different
median values. Thus, if the test returns a p-value lower than 0.05, there is statistical
evidence that at least one of the sample is significantly different, that is, the null hypothesis
for equality of medians between the populations is rejected [62]. Knowing that at least one
method is statistically different from the other, it is necessary to do a pairwise Wilcoxon
test between the methods. Similar to the Friedman test, the Wilcoxon test verifies the
null hypothesis that two algorithms are similar. If the test returns the value of p less than
0.05, the null hypothesis is rejected, and there is statistical evidence that the two methods
analyzed are significantly different [62]. In addition to these two statistical tests, as a way
to complement the results, the A-TOPSIS algorithm proposed in [63] is used to select the
best methods. The A-TOPSIS considers the mean and standard deviation of all metrics,
weighted arbitrarily by the user, to rank the methods.
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4.5.1 ISIC dataset

This section presents the results obtained with the ISIC 2017 Challenge dataset. As
described in Sec. 3, the dataset consists of 2,000 dermoscopic images for training and 600
for testing. First, in order to check the best color space, the performance of various color
space combinations for the segmentation of skin cancers is compared. Each combination is
a concatenation between channels, for example, RGB-LAB means that all six channels are
concatenated as input. Table 2 shows the mean and standard deviation obtained for each
metric described in Sec. 4.2. Each experiment was run 10 times, and the training partition
is shuffled for each time. The final segmentation without post-processing was obtained
using a threshold of 0.55 for the U-Net output. In addition, for better visualization, Fig. 21
shows a boxplot of the Jaccard Index for each method, since it was the measure responsible
for the ranking of the ISIC 2017 Challenge.

Table 2 – Segmentation performance of each color space combination with or without
(w/o) post-processing for the ISIC data set. The best method ranked using
A-TOPSIS and statistically significant based on the Jaccard index is in bold.

C. Space Post. SEN SPE ACC DIC JAC

RGB w/o 0.7892 ± 0.0141 0.9788 ± 0.0031 0.9265 ± 0.0022 0.8322 ± 0.0088 0.7384 ± 0.0079
CRF 0.7657 ± 0.0138 0.9808 ± 0.0029 0.9256 ± 0.0025 0.8241 ± 0.0099 0.7268 ± 0.0096

HSV w/o 0.7948 ± 0.0157 0.9768 ± 0.0026 0.9238 ± 0.0019 0.8247 ± 0.0056 0.7315 ± 0.0080
CRF 0.7732 ± 0.0180 0.9790 ± 0.0026 0.9233 ± 0.0021 0.8193 ± 0.0067 0.7242 ± 0.0108

RGB-HSV w/o 0.7968 ± 0.0119 0.9760 ± 0.0035 0.9241 ± 0.0033 0.8280 ± 0.0080 0.7347 ± 0.0067
CRF 0.7734 ± 0.0140 0.9785 ± 0.0036 0.9236 ± 0.0032 0.8219 ± 0.0080 0.7262 ± 0.0080

LAB w/o 0.7940 ± 0.0190 0.9788 ± 0.0026 0.9274 ± 0.0026 0.8350 ± 0.0056 0.7417 ± 0.0112
CRF 0.7661 ± 0.0181 0.9810 ± 0.0023 0.9264 ± 0.0028 0.8244 ± 0.0065 0.7275 ± 0.0129

RGB-LAB w/o 0.8043±0.0157 0.9768±0.0039 0.9280±0.0023 0.8340±0.0069 0.7465±0.0089
CRF 0.7852 ± 0.0155 0.9786 ± 0.0036 0.9275 ± 0.0024 0.8271 ± 0.0078 0.7397 ± 0.0100

RGB-HSV-LAB w/o 0.7930 ± 0.0217 0.9763 ± 0.0052 0.9247 ± 0.0023 0.8275 ± 0.0061 0.7345 ± 0.0088
CRF 0.7692 ± 0.0238 0.9788 ± 0.0048 0.9241 ± 0.0028 0.8202 ± 0.0079 0.7247 ± 0.0130

RGB-HSV-L w/o 0.7929 ± 0.0130 0.9768 ± 0.0026 0.9248 ± 0.0016 0.8279 ± 0.0063 0.7341 ± 0.0079
CRF 0.7700 ± 0.0138 0.9792 ± 0.0024 0.9242 ± 0.0015 0.8211 ± 0.0062 0.7249 ± 0.0101

RGB-SV-LAB w/o 0.7911 ± 0.0198 0.9775 ± 0.0035 0.9266 ± 0.0034 0.8327 ± 0.0077 0.7381 ± 0.0106
CRF 0.7679 ± 0.0210 0.9796 ± 0.0032 0.9257 ± 0.0035 0.8238 ± 0.0074 0.7268 ± 0.0132

Analyzing the results of Table 2 and the boxplot of figure 21, it is possible to note
that the combination of colors that obtained the best Jaccard index was RGB-LAB. Also,
it is interesting to note that the use of post-processing worsened the result in terms of the
Jaccard index for all cases. In order to understand the reason for this event, it is necessary
to visualize the output generated by the post-processing and compare it to the expected
mask. Fig. 22 shows some comparisons between the results obtained without and with
the CRF as post-processing. It is possible to see that the original masks from the 2017
ISIC Challenge dataset do not have contours close to the border of the lesion. However,
the idea of using CRF is to obtain a result that has a contour as closer as possible to the
border of the lesion. As the measures depends on the original mask, the results obtained
with CRF appear to be quantitatively worse but visually better. To further complement
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Fig. 21. Boxplot for the performance of each color space combination with or without
(w/o) post-processing based on the Jaccard index for the ISIC dataset.

this issue, Fig. 23 presents a comparison of results obtained using different thresholds for
the RGB-LAB combination. The lower the threshold, the lower the confidence required
for the pixel to be classified as part of the lesion, so the lower the threshold, the less the
prediction is tied to the border of the lesion, confirming the same problem described. Since
the score output of the network is commonly greater than 0.8, the performance difference
between values less than 0.8 is not as great as between 0.8 and 0.9, as shown in Fig. 23.

The Friedman test was applied to the results of Table 2 and it was obtained
p < 0.05, so there is at least one method significantly different from the others. Then, as
the best result visually obtained was the combination of RGB-LAB channels, the Wilcoxon
test was done between this method and all the others to verify the statistical significance.
Table 3 shows the result of this test, and it is possible to notice that only the comparisons
with RGB and with LAB obtained p > 0.05, which means that it is not possible to assert
the statistical significance between the RGB-LAB and these methods.

Finally, as a way of complementing the statistical results, the A-TOPSIS algorithm
was used to generate a ranking of the methods. To use A-TOPSIS it is necessary to
consider the mean and standard deviation of the performance of the algorithms. Table
4 describes the variation of the first 5 methods in ranking giving equal weight to both
until disregarding the standard deviation. In all cases, the RGB-LAB was placed first,
which confirms the previous results, reinforcing the idea that this is the best combination
of channels. In order to represent the ranking visually, a weighting of 60% for mean and
40% for the standard deviation was chosen and the ranking obtained is shown in Fig. 24.
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Fig. 22. Examples of the problem described about the masks contained in the ISIC 2017
Challenge dataset. From left to right: the original mask for the image; the mask
obtained without post-processing using 0.55 as threshold; the mask obtained with
CRF as the post-processing. For each mask obtained there is the Jaccard index
resulted. The yellow line is the contour of the mask.

To compare the results obtained in this work with those obtained by the works
described at the beginning of this section, only the Jaccard index will be used, since
this was the measure used to rank participants in the ISIC 2017 Challenge. Therefore,
the chosen methodology of this work was the combination of RGB-LAB channels, as it
obtained the best Jaccard index. Moreover, due to the peculiarity previously described
about the masks, the result used will be with the threshold of 0.2, without post-processing.
Table 5 shows that the method used in this work is comparable with those in the literature,
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Fig. 23. The figure shows the graph of the Jaccard index in relation to various threshold
values for the RGB-LAB methodology. As previously described, this image helps
to visualize that the less the segmentation is tied to the lesion border, the higher
the Jaccard index, since the final masks using low thresholds are more disperse.

Table 3 – Wilcoxon test between the RGB-LAB and the methods used in this work.

Method compared p
RGB 0.05933

RGB + CRF 0.00691
HSV 0.00691

HSV + CRF 0.00506
RGB-HSV 0.02841

RGB-HSV + CRF 0.00691
LAB 0.16880

LAB + CRF 0.01251
RGB-LAB + CRF 0.00506
RGB-HSV-LAB 0.03665

RGB-HSV-LAB + CRF 0.00934
RGB-HSV-L 0.01660

RGB-HSV-L + CRF 0.00691
RGB-SV-LAB 0.02841

RGB-SV-LAB + CRF 0.00506

having a Jaccard index superior to the first place of the competition [24], and also superior
to other techniques used in the literature, having a result only inferior to that obtained by
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Table 4 – Ranking of the classifiers obtained by A-TOPSIS for the ISIC 2017 Challenge
dataset varying the weights of mean and standard deviation.

[mean, std deviation] Ranking
[0.5, 0.5] RGB-LAB ≺ RGB-HSV ≺ RGB-HSV-L ≺ RGB ≺ LAB
[0.6, 0.4] RGB-LAB ≺ RGB-HSV ≺ RGB-HSV-L ≺ RGB ≺ LAB
[0.7, 0.3] RGB-LAB ≺ LAB ≺ RGB-HSV ≺ RGB ≺ RGB-HSV-L
[0.8, 0.2] RGB-LAB ≺ LAB ≺ RGB-HSV ≺ RGB-SV-LAB ≺ RGB
[0.9, 0.1] RGB-LAB ≺ LAB ≺ RGB-HSV ≺ RGB-SV-LAB ≺ RGB
[1.0, 0.0] RGB-LAB ≺ LAB ≺ RGB-HSV ≺ RGB-SV-LAB ≺ RGB

Fig. 24. Ranking of methods obtained by A-TOPSIS for the ISIC 2017 Challenge dataset.
The best methodology in this rank is the RGB-LAB.

the FrCN method, proposed in [25].

4.5.2 PAD dataset - study case

This section presents the results obtained with the PAD dataset. As described in
Sec. 3.1, the dataset has 258 skin cancer images taken from smartphones for training and
111 for testing. In the same way as in the previous section, in order to check the best color
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Table 5 – Segmentation performance of the proposed method compared to methods pre-
sented in [24], [25] for the ISIC 2017 Challenge dataset.

Method Jaccard Index
Proposed Method 0.771285

FCN [25] 0.7663
U-Net [25] 0.6972
SegNet [25] 0.7497
FrCN [25] 0.8128
CDNN [24] 0.765

space, the performance of various color space combinations for the segmentation of skin
cancers is compared. However, as described in Sec. 3.4, there three different methodologies
for training the network for the PAD dataset. Direct train uses only the data from PAD
dataset, direct transfer trains the network only with the ISIC 2017 Challenge and fine-tune
does a transfer learning from the ISIC dataset to the PAD dataset. Table 6 shows the mean
and standard deviation obtained for each metric described in Sec. 4.2. Each experiment
was run 10 times and the final segmentation without post-processing was obtained using a
threshold of 0.55 for the U-Net output. In addition, for better visualization, Fig. 25 shows
a boxplot of the Jaccard Index for each method, since it was the measure responsible for
the ranking of the ISIC 2017 Challenge.

Table 6 – Segmentation performance of each color space combination with or without
(w/o) post-processing for the PAD dataset. It is also presented the results using
direct transfer (DF), direct train (DT) and fine tune (FN). The best method
ranked using A-TOPSIS and statistically significant based on the Jaccard index
is in bold.

Begin of Table
C. Space Method Post. SEN SPE ACC DIC JAC

RGB

DF
w/o 0.9074 ± 0.0234 0.8083 ± 0.0271 0.8163 ± 0.0239 0.5805 ± 0.0229 0.4695 ± 0.0216
CRF 0.8915 ± 0.0268 0.8143 ± 0.0283 0.8207 ± 0.0249 0.5971 ± 0.0238 0.4919 ± 0.0217

DT
w/o 0.8622 ± 0.0215 0.9689 ± 0.0036 0.9512 ± 0.0021 0.7496 ± 0.0074 0.6350 ± 0.0079
CRF 0.8414 ± 0.0288 0.9748 ± 0.0039 0.9549 ± 0.0021 0.7629 ± 0.0082 0.6552 ± 0.0084

FT
w/o 0.8696 ± 0.0133 0.9701 ± 0.0034 0.9542 ± 0.0021 0.7634 ± 0.0067 0.6541 ± 0.0087
CRF 0.8591 ± 0.0135 0.9738 ± 0.0031 0.9567 ± 0.0021 0.7731 ± 0.0070 0.6676 ± 0.0080

HSV

DF
w/o 0.8946 ± 0.0256 0.8384 ± 0.0364 0.8419 ± 0.0317 0.6060 ± 0.0294 0.4967 ± 0.0274
CRF 0.8765 ± 0.0261 0.8446 ± 0.0391 0.8463 ± 0.0340 0.6213 ± 0.0315 0.5189 ± 0.0288

DT
w/o 0.8789 ± 0.0180 0.9568 ± 0.0044 0.9426 ± 0.0029 0.7296 ± 0.0093 0.6137 ± 0.0091
CRF 0.8614 ± 0.0226 0.9637 ± 0.0037 0.9475 ± 0.0026 0.7458 ± 0.0137 0.6363 ± 0.0131

FT
w/o 0.8450 ± 0.0126 0.9712 ± 0.0038 0.9521 ± 0.0024 0.7534 ± 0.0071 0.6425 ± 0.0071
CRF 0.8297 ± 0.0162 0.9750 ± 0.0041 0.9543 ± 0.0027 0.7602 ± 0.0104 0.6542 ± 0.0096
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Continuation of Table 6
C. Space Method Post. SEN SPE ACC DIC JAC

RGB-
HSV

DF
w/o 0.9085 ± 0.0205 0.8189 ± 0.0306 0.8254 ± 0.0264 0.5934 ± 0.0221 0.4856 ± 0.0217
CRF 0.8921 ± 0.0255 0.8243 ± 0.0316 0.8291 ± 0.0271 0.6080 ± 0.0223 0.5055 ± 0.0217

DT
w/o 0.8634 ± 0.0322 0.9615 ± 0.0100 0.9457 ± 0.0065 0.7347 ± 0.0134 0.6207 ± 0.0136
CRF 0.8443 ± 0.0354 0.9675 ± 0.0095 0.9497 ± 0.0058 0.7479 ± 0.0122 0.6393 ± 0.0121

FT
w/o 0.8562 ± 0.0108 0.9702 ± 0.0038 0.9524 ± 0.0028 0.7549 ± 0.0101 0.6461 ± 0.0101
CRF 0.8441 ± 0.0122 0.9738 ± 0.0032 0.9546 ± 0.0023 0.7614 ± 0.0099 0.6563 ± 0.0094

LAB

DF
w/o 0.8985 ± 0.0133 0.8218 ± 0.0240 0.8280 ± 0.0210 0.6010 ± 0.0195 0.4910 ± 0.0194
CRF 0.8656 ± 0.0161 0.8242 ± 0.0256 0.8299 ± 0.0220 0.6030 ± 0.0194 0.4972 ± 0.0191

DT
w/o 0.8854 ± 0.0182 0.9622 ± 0.0087 0.9483 ± 0.0064 0.7491 ± 0.0148 0.6346 ± 0.0149
CRF 0.8565 ± 0.0252 0.9694 ± 0.0078 0.9525 ± 0.0055 0.7617 ± 0.0160 0.6511 ± 0.0176

FT
w/o 0.8609 ± 0.0154 0.9707 ± 0.0032 0.9543 ± 0.0026 0.7653 ± 0.0065 0.6572 ± 0.0068
CRF 0.8328 ± 0.0228 0.9754 ± 0.0030 0.9563 ± 0.0025 0.7670 ± 0.0099 0.6600 ± 0.0115

RGB-
LAB

DF
w/o 0.8586 ± 0.0428 0.8681 ± 0.0315 0.8643 ± 0.0263 0.6248 ± 0.0315 0.5150 ± 0.0307
CRF 0.8772 ± 0.0383 0.8445 ± 0.0346 0.8461 ± 0.0295 0.6202 ± 0.0320 0.5143 ±0.0316

DT
w/o 0.8807 ± 0.0355 0.9609 ± 0.0087 0.9468 ± 0.0046 0.7385 ± 0.0113 0.6229 ± 0.0138
CRF 0.8630 ± 0.0435 0.9676 ± 0.0081 0.9515 ± 0.0040 0.7551 ± 0.0125 0.6456 ± 0.0130

FT
w/o 0.8729 ± 0.0455 0.9699 ± 0.0338 0.9545 ± 0.0281 0.7653 ± 0.0326 0.6566 ± 0.0310

CRF 0.8607±0.0406 0.9736±0.0373 0.9569±0.0317 0.7732±0.0335 0.6685±0.0324

RGB-
HSV-
LAB

DF
w/o 0.9222 ± 0.0220 0.8149 ± 0.0325 0.8232 ± 0.0279 0.5886 ± 0.0228 0.4790 ± 0.0209
CRF 0.9069 ± 0.0256 0.8212 ± 0.0330 0.8278 ± 0.0284 0.6047 ± 0.0229 0.5003 ± 0.0212

DT
w/o 0.8675 ± 0.0215 0.9630 ± 0.0081 0.9470 ± 0.0046 0.7383 ± 0.0121 0.6228 ± 0.0120
CRF 0.8477 ± 0.0246 0.9694 ± 0.0077 0.9512 ± 0.0041 0.7518 ± 0.0123 0.6420 ± 0.0115

FT
w/o 0.8554 ± 0.0124 0.9708 ± 0.0027 0.9535 ± 0.0020 0.7578 ± 0.0073 0.6484 ± 0.0083
CRF 0.8413 ± 0.0125 0.9745 ± 0.0020 0.9557 ± 0.0017 0.7639 ± 0.0082 0.6582 ± 0.0086

RGB-
HSV-

L

DF
w/o 0.9112 ± 0.0262 0.8261 ± 0.0369 0.8323 ± 0.0313 0.6031 ± 0.0237 0.4951 ± 0.0221
CRF 0.8951 ± 0.0281 0.8317 ± 0.0387 0.8362 ± 0.0328 0.6192 ± 0.0217 0.5167 ± 0.0199

DT
w/o 0.8674 ± 0.0293 0.9609 ± 0.0098 0.9447 ± 0.0057 0.7339 ± 0.0142 0.6184 ± 0.0160
CRF 0.8455 ± 0.0326 0.9679 ± 0.0085 0.9495 ± 0.0046 0.7475 ± 0.0124 0.6384 ± 0.0127

FT
w/o 0.8573 ± 0.0216 0.9692 ± 0.0052 0.9515 ± 0.0030 0.7542 ± 0.0068 0.6441 ± 0.0069
CRF 0.8437 ± 0.0259 0.9729 ± 0.0050 0.9537 ± 0.0029 0.7597 ± 0.0105 0.6531 ± 0.0102

RGB-
SV-
LAB

DF
w/o 0.9165 ± 0.0145 0.8008 ± 0.0167 0.8099 ± 0.0155 0.5793 ± 0.0141 0.4696 ± 0.0129
CRF 0.9007 ± 0.0154 0.8054 ± 0.0186 0.8131 ± 0.0173 0.5939 ± 0.0175 0.4895 ± 0.0158

DT
w/o 0.8616 ± 0.0234 0.9666 ± 0.0061 0.9499 ± 0.0033 0.7453 ± 0.0128 0.6299 ± 0.0150
CRF 0.8429 ± 0.0273 0.9727 ± 0.0054 0.9539 ± 0.0028 0.7604 ± 0.0109 0.6510 ± 0.0118

FT
w/o 0.8648 ± 0.0134 0.9695 ± 0.0036 0.9532 ± 0.0026 0.7594 ± 0.0091 0.6507 ± 0.0108
CRF 0.8528 ± 0.0130 0.9729 ± 0.0033 0.9555 ± 0.0024 0.7656 ± 0.0098 0.6608 ± 0.0113

Analyzing the results of Table 6 and the boxplot of figure 25, it is possible to note
that, as for the ISIC dataset, RGB and RGB-LAB also had top results. In addition, it
is interesting to note that the use of post-processing in this case improved the Jaccard
index results for all cases. This is due to the fact that the masks marked in this dataset
are tighter to the edges of the lesion, as shown in Fig. 26, favoring the results obtained
with the CRF. Another point to emphasize is the importance of the information coming
from the images taken by smartphones. The results of the direct transfer (DF) were much
worse than the results of direct training (DT) and fine-tune (FT). This is mainly due to
two factors, the first is the way the masks are made. Segmentation is a subjective task,
so training the network in a domain marked by certain experts, and testing in another



Chapter 4. Experimental results 51

Fig. 25. Boxplot of the Jaccard index obtained from each method for the PAD dataset.

domain where masks were made by different people may not work. The second factor is
the image itself, while the dermoscopic images are well controlled, do not have as much
variation of luminosity and are very clear, the photos taken by smartphones, on the other
hand, are much more sensitive to the variations of luminosity, have different zoom levels,
can be taken with the flash on, and have a high chance of being blurred. Finally, it can
be seen in Fig. 25 that fine-tune improved performance in terms of the Jaccard for all
methods, showing the importance of transfer learning.

Analogously to the first part of the experiments, the Friedman test was applied
and obtained p-value much smaller then 0.05, indicating that at least one algorithm is
significantly different. Once again, the Wilcoxon test is performed, now for the RGB-LAB
+ CRF using the fine-tune methodology, and the result are shown in Table 7 only for the
comparisons where the p-value obtained was greater then 0.05.

Table 7 – Results in which the Wilcoxon test with the RGB-LAB + CRF + FT method
resulted in p > 0.05.

Method compared p
RGB + CRF + FT 0.72127
LAB + CRF + FT 0.11412

RGB-SV-LAB + CRF + FT 0.24112
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Fig. 26. Examples of ground-truth from the PAD dataset. It is possible to note that the
contour, represented by the yellow line, is tied to the lesions border.

The statistical test was again complemented with the A-TOPSIS algorithm. Table
8 describes the ranking variation according to the mean weights and standard deviation of
the performance. Due to the large number of methods, only the best 5 is displayed for each
variation. In all cases, the RGB-LAB was placed first, which confirms the previous results,
reinforcing the idea that this is the best combination of channels. In order to represent
the ranking visually, a weighting of 60% for mean and 40% for the standard deviation was
chosen and the ranking obtained is shown in Fig. 27.

As the dataset is still being created, and this is a pioneering work using it, there
are no results to be compared. Therefore, one way of verifying the segmentation quality,
in addition to the metrics already presented, is by visual inspection. Fig. 28 shows some
segmentation obtained using the RGB-LAB color space, with post-processing and fine-tune.
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Table 8 – Ranking of methods obtained by A-TOPSIS for the PAD dataset.

[mean, std. dev.] Ranking
[0.5, 0.5] RGB-LAB+FT+CRF ≺ RGB-LAB+FT ≺ RGB-LAB+DT+CRF ≺ RGB-LAB+DT ≺ RGB-HSV-L+FT
[0.6, 0.4] RGB-LAB+FT+CRF ≺ RGB-LAB+FT ≺ RGB-LAB+DT+CRF ≺ RGB-LAB+DT ≺ RGB-HSV-L+FT
[0.7, 0.3] RGB-LAB+FT+CRF ≺ RGB-LAB+FT ≺ RGB-LAB+DT+CRF ≺ RGB-LAB+DT ≺ RGB-HSV-L+FT
[0.8, 0.2] RGB-LAB+FT+CRF ≺ RGB-LAB+FT ≺ RGB-LAB+DT+CRF ≺ RGB-HSV-L+FT ≺ RGB-LAB+DT
[0.9, 0.1] RGB-LAB+FT ≺ RGB-LAB+FT+CRF ≺ RGB-LAB+DT+CRF ≺ RGB+FT ≺ RGB+FT+CRF
[1.0, 0.0] RGB-LAB+FT ≺ RGB+FT ≺ RGB-LAB+FT+CRF ≺ RGB+FT+CRF ≺ LAB+DT ≺ LAB+FT

Fig. 27. Ranking of methods obtained by A-TOPSIS for the PAD dataset. The best
methodology in this rank is the RGB-LAB+FT+CRF.
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Fig. 28. Some examples of segmentation results obtained using the RGB-LAB, CRF, and
fine-tuning color space for the PAD data set. The green line is the expected
contour and the red line is the output obtained using the method. It may be noted
that even in difficult scenarios, as some examples have shadows, low contrast, hair
and different light conditions, the segmentation still performs well.
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5 Conclusion

This work presented a study on skin cancer segmentation using the U-Net con-
volutional neural network. A new dataset of skin cancer images taken by smartphones
was presented. Different combinations of color space and post-processing were proposed.
First, the results were obtained using the existing ISIC dataset. An analysis of the results
was then made and the problem of lesion marking was discussed in detail. After that, the
results were compared to each other and the best method was compared with the results
reported in the literature. To rank the methods proposed in this work, the A-TOPSIS
algorithm was used, in addition to the statistical tests. Next, a real-world case study was
investigated using the dataset described in this work, and the results were compared using
the same methods previously used, but including learning transfer methodologies. The
combination of RGB-LAB channels was the one that obtained the best results during all
the experiments. The transfer learning, as well as the post-processing, improved practically
all the results, showing the importance of these techniques. However, the results could not
be compared, since the database is still being created. Therefore, to avoid the problems
described in relation to the masks, it is necessary a greater validation of the dataset by
specialists.

As future work, we intend to investigate the performance of other deep learning
methods for segmentation, including ensembles, for the database presented in this work.
In addition, in order to consolidate the PAD dataset, we intend to validate the data with
greater confidence with the help of specialists in dermatology. It is also intended to increase
the amount of data present in the database.
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